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Abstract

Aerial Manipulation aims at combining the maneuverability of aerial vehicles with
the interaction capabilities of robotic arms. This comes at the cost of additional
control complexity due to the dynamic coupling between the two systems. The
basis of this Master thesis is a custom built MAV-delta arm system using a Non-
linear Model Predictive Control (NMPC) method specifically designed for Micro
Aerial Vehicles (MAVs) equipped with a robotic arm. As part of this thesis, the
aforementioned MAV-delta arm system and NMPC method are assessed in exten-
sive experiments performing Aerial Writing tasks on a whiteboard. The writing
precision is evaluated through an appearance-based visual error which is proposed
as a new standardised precision metric for Aerial Writing tasks. During the ex-
periments, the NMPC is provided with accurate MAV and whiteboard localisation
from an external motion capture system. However, in a real-world Aerial Manipu-
lation task outside of a flight arena, such pose information would not be accessible.
Instead, a Visual-Inertial SLAM system would give both noisy and drifting MAV
pose estimates. In addition, the target surface pose would not be known exactly and
parameter mismatches between the NMPC model and the physical system would be
expected. The main contribution of this Master thesis is an extension to the NMPC
method to allow operation in real-world setups by introducing a multimodal feed-
back pipeline. Both visual and tactile measurements are fused into three separate
estimators to determine the drone’s body, end effector and target surface pose. The
proposed algorithms are evaluated extensively in a highly realistic, novel simulator
allowing interactive Aerial Writing in the loop. The multimodal feedback is shown
to accurately remove drift from the MAV position estimate, accounts for orienta-
tion misalignments in the whiteboard pose and corrects for errors in the end effector
position caused by model mismatches. The resulting drawing precision is shown to
be improved significantly and repeatably for different configurations of the error
sources.
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Chapter 1

Introduction

1.1 Motivation

Over the past decades, aerial manipulation has received great attention in the
robotics research community, with many different systems in use [1, 2]. The tasks
solved by aerial manipulators range from grasping, fetching and transporting arbi-
trary objects, to pushing against fixed surfaces. Potential use cases are numerous:
inspection of infrastructure like bridges or manufacturing plants [3, 4, 5], physi-
cal interaction through tools like grinding, welding, drilling and other maintenance
work in hard-to-reach places [6, 5], and the pick-up and transport of objects [7, 8].
All of these tasks require the MAV to be equipped with an additional mechanism
referred to as the end effector. The coupling of the MAV dynamics with the moving
end effector poses an interesting challenge from a control perspective given the in-
herent instability of MAVs. The requirement for high precision in real-world aerial
manipulation applications further increases the difficulty of the control problem.
The basis for this Master thesis is the aerial manipulator platform proposed in [9]
which attempts to solve the mentioned control challenge. The system uses a Non-
linear Model Predictive Control (NMPC) method which is based on a hybrid model
capturing the effect of contact and coupled MAV-arm dynamics. This method will
be referred as the ‘pre-existing NMPC’ throughout the thesis. The MAV is designed
to have low mechanical complexity and consists of an under-actuated hexacopter
and a 3-DoF parallel delta arm. As part of this thesis, this system was evaluated in
extensive real-world experiments performing Aerial Writing tasks, i.e. drawing on
a whiteboard using a pen mounted at the end effector as visualised in Figure 1.1,
which serves as an example for any aerial task requiring the MAV to carry a tool.

Figure 1.1: The MAV-arm system performing a real-world Aerial Writing task using
the pre-existing NMPC method and external pose tracking.

1



Chapter 1. Introduction 2

Due to the lack of a widely used error metric for Aerial Writing, this thesis pro-
poses an appearance-based visual error to be used as a new standardised evaluation
method. To the author’s best knowledge, the platform achieves unprecedented accu-
racy for contact-based aerial manipulation while using an under-actuated MAV-arm
system.
However, it should be noted that during these experiments, the NMPC was provided
with external, high accuracy pose estimates for both the MAV and manipulation
target coming from an external motion capture system. In a real-world aerial ma-
nipulation setup, such accurate measurements would not be available. Instead, the
MAV would run some implementation of SLAM onboard, e.g. a system like OKVIS
[10]. Hence, MAV pose estimates would be noisy and drift over time. Furthermore,
in a real-world aerial manipulation setup, the pose of the manipulation target would
only be known approximately and should be updated by the robot sensing as the
mission progresses. Even during the experimental evaluation using external local-
isation tracking, the limited accuracy of the whiteboard pose estimate proved to
degrade the writing quality. Finally, both the use of a simplified, zero-order dy-
namics model of the delta arm as well as uncertainty in its physical parameters lead
to a mismatch between the expected system behavior in the NMPC and the actual
delta arm motion. In summary, three sources of error are identified:

1. MAV Position Drift caused by VI-SLAM running onboard.

2. Whiteboard Orientation Misalignment caused by imperfect calibration.

3. End Effector Position Errors caused by mismatches between the delta arm
model and the physical system.

The main goal of this thesis is to introduce three individual feedback components to
address these error sources and allow the aerial manipulator to be used outside lab-
oratory conditions. According to the error sources, the three feedback components
are:

1. MAV Position Drift Estimator introduced in Section 5.2.2.

2. Whiteboard Orientation Estimator introduced in Section 5.3.2.

3. Relative End Effector Position Control introduced in Section 5.4.3.

All three components are tested in depth both individually as well as in combination
through simulation of the Aerial Writing task in a highly realistic drone simulator
as illustrated in Figure 1.2. The feedback is based on multimodal measurements
from both a camera and a force sensor mounted on the MAV.

Figure 1.2: The MAV-arm system performing a simulated Aerial Writing task using
the NMPC method with additional multimodal feedback.
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1.2 Claimed Contributions

In this thesis, the author claims to make the following contributions:

1. The pre-existing NMPC method is extended to include multimodal feedback
from visual and tactile measurements to allow Aerial Writing in a real-world
setup with onboard MAV localisation, faulty Whiteboard orientation calibra-
tion and delta arm model mismatches.

2. A highly realistic simulator is developed to evaluate the proposed feedback
while providing full simulation of the Aerial Writing process, the error sources
as well as visual and tactile sensor outputs.

3. The NMPC method proposed by [9] is evaluated experimentally in Aerial
Writing tasks using an appearance-based visual error metric. This metric is
proposed as a new standardised way to measure the precision of platforms
performing such tasks.

It should be highlighted that both the pre-existing NMPC as well as the novel
multimodal feedback method are generic enough to be applied to different types of
vehicles such as omni-directional ones and/or other types of manipulators.

1.3 Thesis Structure

This thesis is organised as follows: In Section 2 the reader will find an overview
of the related work on aerial manipulation in general and the use of visual and
tactile feedback in particular. In Section 3 the NMPC method introduced by Dimos
Tzoumanikas and the associated notation and coordinate frames are explained.
Section 4 gives an overview of the software architecture and the simulation setup.
The multimodal feedback is presented in detail in Section 5. Both the experimental
results for the pre-existing NMPC method and the simulations for the multimodal
feedback are shown in Section 6. Finally, Section 7 discusses the findings before
drawing conclusions and directions for future work in Section 8.

1.4 Notation

Vectors are denoted as bold lower case symbols, e.g. v. Left-hand subscripts, e.g.

Av, are used to indicate the coordinate representation in the F−→A frame of reference.
The rotation matrix CAB changes the representation of the vector Bv from F−→B

to F−→A as Av = CAB Bv. Analogously to the rotation matrix CAB , the quaternion
qAB with ⊗ denoting the quaternion multiplication is used. The skew symmetric
matrix of the vector v is denoted as [v]×. The motion of the MAV Body frame
F−→B (x : forward, y : left, z : upward) is expressed with respect to the World frame
F−→W (z : upward). Measured values are denoted with tildes, e.g. x̃, while estimated
values are denoted with hats, e.g. ẑ.
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Chapter 2

Related Work

This chapter introduces relevant prior work and connects it to the thesis at hand
where possible. The first section considers aerial manipulation and contact-based
tasks such as Aerial Writing. The second section focuses on the error sources tackled
in this thesis while the third section gives an overview on visual and tactile feedback.

2.1 Aerial Manipulation

Aerial manipulation systems can be distinguished based on the MAV type (as being
omni-directional or under-actuated) and the end effector (as being fixed or moving).

2.1.1 Omni-directional Platforms

Broadly speaking, omni-directional MAVs do not require a moving end effector to
fulfill complex aerial tasks as the necessary 6-DoF are provided by the MAV itself.
Examples include the works presented by [11, 12, 13]. Brescianini and D’Andrea
[11] show an omni-directional MAV called OmniCopter that achieves 6-DoF motion
by using eight fixed rotors in a non co-planar configuration. In a subsequent study
[12], this platform is used with a fixed end effector to fetch moving objects. Using a
similar approach with a fixed configuration of tilted rotors, Ryll et al. [13] propose a
novel paradigm to control all 6-DoF of the MAV while using a rigid end effector to
exert forces and torques independently. The system is demonstrated in numerous
experimental tasks, e.g. surface sliding. However, tilt-rotor configurations introduce
significant turbulence, decreasing energy efficiency and thus flight time.

Following a different approach, Kamel et al. [14] develop a setup of six rotors which
tilt individually to control the direction of their thrust vector. [5, 15] leverage
this system, named Voliro, to solve a variety of aerial manipulation tasks with a
rigidly mounted, low complexity end effector. The authors further show precise
force control when in contact with unstructured environments while running online
visual-inertial state estimation. While this platform allows for accurate 6-DoF flight
and longitudinal force exertion with a relatively simplistic control method, it is me-
chanically more complex and thus more costly compared to classical multi-copter
platforms. They also point out that due to aging infrastructure the demand for
contact-based inspection will continue to grow in the future. At the same time,
sensor miniaturisation will enable more accurate force tracking using aerial ma-
nipulators. Recently, a similar approach was followed by Ángel Trujillo et al. [4],
who introduced AeroX, an omni-directional octocopter for contact-based inspec-
tion. Their clever end effector design minimises the torque caused by contact, and
features wheels on its base to move along a surface while remaining in contact. In
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[6, 16] the authors show a less complex but highly capable tri-tilt-rotor MAV for sur-
face grinding and obstacle manipulation. The control model consists of two disjoint
modes: one for free-flight and another for physical interaction. The authors further
discuss different force exertion principles for under- and fully-actuated MAVs.

2.1.2 Under-actuated Platforms

Employing an under-actuated MAV to perform aerial manipulation typically in-
creases the complexity of the end effector since it has to provide additional DoF.
Many different end effector designs have been proposed over the last years. We
can categorise these works by the increasing complexity of the end effector: Dari-
vianakis et al. [17] use a fixed end effector on an under-actuated MAV to perform
contact-based tasks. In [18], the authors use different light-weight, low complexity
grippers to perch, pick up, and transport payload. Meanwhile, Kessens et al. [7] use
a self-sealing suction mechanism to pick up and carry objects. Moving up in terms
of complexity, Kim et al. [19] suggest mounting a 2-DoF robotic arm on an MAV
to allow grasping and transporting of objects. The authors propose an adaptive
sliding mode controller for the combined system. In [20] the authors present an
aerial manipulator with two robotic 2-DoF arms to open a valve. The MAV and
arms are controlled as a coupled system which is modeled as a switched nonlinear
system during valve turning. The approach presented in [21] controls an MAV with
a servo robot arm by considering the arm’s motion and using a moving battery as
well as the MAV thrust to counteract it. Furthermore, external forces and moments
are estimated and fed back into the controller. In a more recent work, Suarez et al.
[22] propose a light-weight, human-sized dual arm system designed to minimise the
inertia transferred to the MAV. Each of the two arms add 5-DoF to the system and
the applied arm control law takes into account that low-cost servo motors do not
allow torque control but require position commands. Further, a torque estimator
is used to predict the torques produced by the servos and inform the MAV control
algorithm accordingly. In order to minimise such disturbances coming from the end
effector, Nayak et al. [23] propose a light-weight design which can produce longi-
tudinal forces for contact-based inspection using a switched system MPC method
incorporating the contact dynamics. While attaching a serial robotic arm on an
MAV increases the number of tasks it can perform, they only provide limited pre-
cision when using low-cost and light-weight actuators. Some previous efforts try to
mitigate this by mounting a parallel delta arm on an MAV instead, which allows
higher precision at lower mechanical complexity. In [24, 25] the authors demonstrate
a multi-objective dynamic controller which considers dynamic effects between the
MAV and its 3-DoF delta arm. A linear model predictive control approach includ-
ing external disturbance estimation is used for MAV tracking while the end effector
is controlled using a PID controller. The same system is used in [26] to inspect tree
cavities with a camera mounted at the end effector.
As mentioned, some methods specifically consider the coupling between MAV and
end effector. A similar approach is taken in [27], where a shifting CoM is assumed.
However, instead of correcting for end effector motion, the CoM displacement is
used to adapt to any offsets between the true CoM of the MAV and its geometric
centre to remove remaining tracking errors in the system.
In summary, when comparing under-actuated to fully-actuated approaches, the for-
mer result in mechanically simpler, cheaper and thus more widespread platforms
which in turn have less control authority over lateral DoFs. Hence, they require
complex control methods to provide reasonably precise force exertion. The lat-
ter can provide more accurate force control with simpler methods. However, the
higher mechanical complexity not only increases cost but also the number of model
parameters and hence model uncertainty [15].
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2.1.3 Aerial Writing

In this work, Aerial Writing is performed for evaluation of the presented system and
control method. It is used to show the ability of the aerial manipulator to track a
reference trajectory while being in contact and exerting a given force. The same
evaluation task was already used in efforts by [17, 28, 5]. In Darivianakis et al.
[17], the authors use a fixed end effector on an under-actuated MAV controlled
by a linear MPC method and mode switching between a free-flight and in-contact
model. Hence, there are no coupled dynamics to be taken into account. A similar
task is performed by a paint spraying drone presented in [29]. This however does
not require contact and therefore poses a somewhat different control challenge.

When comparing the approach presented in this thesis to the first approach [17], it
achieves higher accuracy and flexibility in terms of potential use cases due to the
moving end effector. In contrast to the second approach [5], the NMPC achieves
on par precision while relying on a simpler, under-actuated platform. However, the
fully-actuated platform in [5] can be adapted to a much wider range of use cases
and is able to achieve higher lateral force exertion precisely.

2.2 Considered Error Sources

2.2.1 Drift in VI-SLAM

Any kind of SLAM system running onboard a robot to provide localisation based
on relative sensors like wheel encoders, IMU or visual landmarks is bound to drift
away from the true position of the robot. This phenomenon is referred to as dead
reckoning and happens gradually over time as small errors accumulate. For certain
outdoor applications, this can be solved by using GPS as an absolute position
measurement. However, for most aerial manipulation tasks, relying on GPS is not
possible due to lack of satellite visibility (indoor operation) and the requirement for
millimetre-level accuracy as even the best Differential GPS systems can only deliver
centimetre-level precision [30]. Hence, the ability to remove drift using onboard
sensing is crucial. A popular approach taken in Visual Inertial SLAM systems is
Loop Closure [31], where the robot tries to recognise previously visited areas to
reduce the uncertainty accumulated in the map. Another method to reduce drift is
to perform tight fusion of IMU data into a key-frame based nonlinear optimisation
as shown by the authors of [10]. Further, tracking visual changes induced by camera
motion in a dense manner as done in [32, 33] also reduces the amount of drift.

In summary, the amount of drift which a VI-SLAM system accumulates over time
depends on factors like its underlying method and the environment in which it
performs. Therefore, there is no single true assumption to be made when simulating
or modelling drift.

2.2.2 External Motion Capture

The external pose measurements used in this thesis are provided by a Vicon system.
As described in [34], such a setup allows reliable measurements with sub-millimetre
accuracy for both static and moving objects when calibrated perfectly. However,
during the experiments performed in Section 6.2, the observed accuracy was sig-
nificantly lower and not as reliable. Possible reasons for this are discussed later
on.
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2.2.3 Parallel Delta Robot

A delta robot consists of three arms connected to a base through rotary joints.
Each arm includes another universal joint connecting the rigid upper part to a par-
allelogram shaped lower part which connects to the end effector. The end effector
platform always remains the same orientation as the base, hence the name parallel
robot. All parts together form a closed kinematic chain. In [35], a complete mod-
elling for such a delta parallel robot is introduced. The parameters in such a fully
feed-forward model can only be measured up to a certain precision. Hence, there
will be a mismatch between the setpoint positions sent to the delta arm and the
actually achieved position. This is addressed in [36] where a kinematic calibration
scheme is used to update the model parameters according to observations of its
actual motion. In [37], a structured approach to finding an optimal set of delta arm
parameters is given. Finally, [38] lists the Jacobians for the delta arm setup and
uses them to analyse singularities. However, for the sake of simplicity, the Jacobians
used in Section 5.4.3 are computed numerically based on the inverse kinematics.

2.3 Multimodal Feedback

2.3.1 Visual Feedback

When looking into visual feedback in connection with robotic manipulation, one
major field of study is Visual Servoing. In [39, 40] the authors give a comprehensive
introduction to this collection of methods. The distinction between Image-based
Visual Servoing (IBVS) and Position-based Visual Servoing (PBVS) is explained.
The former, IBVS, formulates the control law based on an error in the image plane
between the current and intended features. No pose estimation for the target is
performed in these approaches. In [41] such an IBVS method was extended to
include state constraints and predictions along a planning horizon. The authors of
[42, 43] then present a similar predictive IBVS approach with additional robustness
to control a fixed serial robotic arm with the camera attached on the end effector
(eye-in-hand). Finally, in [44] a IBVS method is extended to a stochastic MPC to
perform aerial grasping of a cylindrical object using a robotic grasping arm mounted
on an MAV. One major drawback of IBVS is its rigid approach and the target pose
is not estimated. The method used in this thesis would rather fall into the latter
set of approaches, PBVS. The pose of the target is estimated with respect to the
camera, based on which commands are sent to the robot.
To compute the visual measurement used in the proposed approach, template
matching as explained in [45] is applied. To allow fast matching, a metric based
on the normalised sum of squared differences as presented in [46] is used. To mea-
sure how reliable the current visual measurement is, the matching uncertainty is
estimated as proposed by the authors of [47].

2.3.2 Tactile Feedback

To directly control the force acting from the end effector onto the target, one can
either estimate the exerted force based on the MAV state or even incorporate actual
tactile measurements. An external force and wrench estimator is used by [20, 28].
Similar to the tactile feedback used in the proposed method at hand, the system
shown in [15] employs a force sensor to provide direct haptic feedback when in
contact.



Chapter 3

Background

In this chapter, the pre-existing NMPC pipeline proposed in [9] is explained. Af-
ter defining the coordinate frames, the subsequent sections introduce the hybrid
modelling approach as well as the model-based control and delta arm kinematics.

3.1 Coordinate Frames

The different coordinate frames used in the background work are shown in Figure
3.1. For the pre-existing NMPC, the World and Touch frame are known exactly.

Figure 3.1: The coordinate frames F−→W , F−→B , F−→A, F−→E , and F−→T stand for the
World, MAV Body, Arm, End Effector, and Touch frame, respectively.

3.2 Hybrid Modelling

The standard Newton-Euler equations are used to model the combined MAV-arm
dynamics. The MAV is modeled as a single rigid body object while only quasi-static
forces introduced by the arm dynamics and its interaction with the environment are
considered. The effect of end effector motion and interaction with the environment
on the MAV dynamics is approximated by introducing additional, external forces
and moments. Overall, the combined dynamics take the following form:

9
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W ṙB = W vB , (3.1a)

q̇WB =
1

2
Ω(Bω )qWB , (3.1b)

W v̇B =
1

mc

CWB (BFr + BFe) + Wg, (3.1c)

Bω̇ = Jc
−1(BMr + BMe − Bω × JcBω ), (3.1d)

Ω(Bω ) =

[
Bω
× −Bω

Bω
> 0

]
, (3.1e)

where mc, Jc are the combined MAV-arm mass and inertia tensors, respectively.
Regarding the forces and moments BFi,BMi, the subscript i ∈ {r, e} is used to
distinguish the ones generated by the MAV motors r from the ones caused by the
end effector movement e and its potential contact with the environment. The MAV
motor-generated forces and moments are given by:

BFr :=
[
0, 0, T

]>
, T =

6∑
i=1

fi, (3.2a)

BMr :=

6∑
i=1

(
fiBri × Bez + (−1)i+1kmfiBez

)
, (3.2b)

with fi ∈ R the thrust produced by the ith motor, Bri its position with respect to the
MAV Body frame, km the known thrust to moment constant and Bez = [0, 0, 1]>.

Equation 3.2 can be summarised as
[
BMr, T

]>
= A

[
f1 f2 . . . f6

]>
with

A ∈ R4×6 the allocation matrix similar to the one described by Achtelik et al. [48].

BFe and BMe are given by:

BFe := CBE EFc, (3.3a)

BMe := BrE × BFe + (BrE − BrE0
)× (CBW me Wg), (3.3b)

where EFc is the contact force acting on the end effector expressed in its frame
F−→E and BrE0

∈ R3 the nominal end effector position which results in no CoM
displacement. The two terms in the Equation 3.3b represent the moments due
to contact and due to the displacement of the CoM respectively. The combined
mass mc = m+me is the sum of the MAV and end effector, respectively, while the
combined rotational inertia can be computed as Jc = J+mediag(BrE−BrE0

)2 with
me being the mass of the end effector, J = diag(Jx, Jy, Jz) the inertia tensor of the
MAV (including the arm mass in nominal position) and diag(·) the corresponding
diagonal matrix.

Regarding the contact force, an approximation is made by applying a linear spring
model as:

EFc = CET (ksT rEz
), (3.4)

where ks is a known spring coefficient and CrEz
is the normal component of the

contact surface penetration. This way, the controller can anticipate contact before
it even happens and there is no need for a switching mode controller (one for free
flight and another one for contact dynamics).
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3.3 Model Based Control

For the control formulation the following control state and input are defined:

x :=
[
W rB ,W vB ,qWB ,Bω

]> ∈ R6 × S3 × R3, (3.5a)

u :=
[
BMr, T,ArE

]> ∈ R7. (3.5b)

Note that BrE is used for the formulation of the control model, while ArE is used in
the control input. Using the constant and known homogeneous transformation TBA
one can switch between the coordinate representation of these position vectors.
The following error functions are used for the position of the MAV, the position of
the end effector, the MAV linear and angular velocity, the orientation, the contact
force and the control input, respectively:

erB = W rB −W rrB , (3.6a)

erE = W rE −W rrE , (3.6b)

ev = W vB −W vrB , (3.6c)

eω = Bω − CBBr
B

rωr, (3.6d)

eq = [q−1WB ⊗ qrWB ]1:3, (3.6e)

ef = fc − f
r
c , (3.6f)

eu = u− ur, (3.6g)

with fc :=
E

Fcz and the superscript r used to denote the time-varying reference

quantities. The optimal input sequence u∗ is obtained by the online solution of the
following constrained optimisation problem:

u∗ = argmin
u0,...,uNf

{
Φ(xNf

,xrNf
) +

Nf−1∑
n=0

L(xn,x
r
n,un)

}
, (3.7a)

s.t. : xn+1 = fd(xn,un), (3.7b)

x0 = x̂, (3.7c)

ulb ≤ ui ≤ uub, i = 1, . . . , 7, (3.7d)

where Nf is the discrete horizon length, fd is the discrete version of the dynam-
ics given in Equations 3.1-3.3, x̂ is the current state estimate and ulb, uub are
the appropriate lower and upper bounds of the control input defined in Equation
3.5. For the intermediate L and final terms Φ quadratic costs of the form e>i Qiei
∀ei ∈ {erB ,erE ,ev,eω,eq, ef ,eu} are used as defined in Equation 3.6 where the gain
matrices Qi < 0 were experimentally tuned.
The optimal control problem is implemented using a modified version of the CT
toolbox [49] with a 10 ms discretisation step and a 2 s constant prediction horizon.
A Runge-Kutta 4 integration scheme is applied, followed by a re-normalisation for
the quaternion. As common in receding horizon control, the first input u∗0 is applied
to the system and the whole process is repeated once a new state estimate x̂ becomes

available. The motor commands f =
[
f1 f2 . . . f6

]>
for the MAV are obtained

by solving the following QP:

f∗ = argmin
f

(∥∥Af− u∗01:4
∥∥2

W + λ ‖f‖22
)
, (3.8a)

s.t. : fmin ≤ fi ≤ fmax, i = 1, . . . , 6, (3.8b)

where fmin, fmax ∈ R are the minimum and the maximum attainable thrusts, W ∈
R4×4 is a gain matrix and λ = 10−7 is a regularisation parameter. The end effector
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position commands u∗05:7 are mapped into servo angle commands θ1, θ2, θ3 by solving
the inverse kinematics problem for the delta arm explained in Section 3.4. In the
case of an infeasible (e.g. outside the arm’s workspace) or unsafe end effector position
command (e.g. one that results in a collision between the MAV propellers and the
arm’s links), the position command is reprojected onto the boundary of the feasible
and safe to operate workspace. In practice, this was rarely the case as the MAV
and end effector reference trajectories are designed so that the end effector operates
close to its nominal position. In this way the usable workspace is maximised while
the effect of the CoM displacement (which is captured by the control model) is
minimised.
The C++ implementation of the above, requires 6.7 ms with a standard deviation
of 0.57 ms per iteration. On average, 98% of the computation time is spent on the
optimisation problems defined in Equations 3.7 and 3.8.
It should be highlighted that the proposed method is generic enough to be applied
to different types of vehicles such as omni-directional ones and/or other types of
manipulators. In that case the control input and the appropriate control allocation
method has to be changed based on the vehicle and manipulator DoF and their
actuator type. Similarly, the model can easily be extended to capture aerodynamic
friction, gyroscopic moments, handle multiple contact points or use more sophis-
ticated contact models (e.g. ones that include combination of linear springs and
dampers). Similarly, the Aerial Writing task which are used for the experimental
evaluation of the framework, is just an example application that requires preci-
sion. The algorithms are believed to be adaptable to other tasks such as inspection
through contact.

3.4 Delta Arm Kinematics

The MAV is equipped with a custom built 3-DoF delta arm [35] as shown in Figure
4.2. Its main advantages are speed, as its few moving parts are made of light-
weight materials, precision and the easy to solve forward and inverse kinematics.
The forward kinematics problem (i.e. determining the position of the end effector

ArE given the joint angles θ1, θ2, θ3) can be solved by computing the intersection
points of three spheres (shown in Figure 3.2) of radius l with the following centres:

ArJ1 =
(
R− r + L cos(θ1)

)
Aex − sin(θ1)Aez,

ArJ2 = Cz(120o)
((
R− r + L cos(θ2)

)
Aex − sin(θ2)Aez

)
,

ArJ3 = Cz(240o)
((
R− r + L cos(θ3)

)
Aex − sin(θ3)Aez

)
,

where R, r, L correspond to the arm physical parameters shown in 3.2, Aex =

[1, 0, 0]>, Aez = [0, 0, 1]> and Cz(120o),Cz(240o) rotation matrices of 120o and
240o degrees around Aez. The maximum number of intersection points is two and
this corresponds to an end effector position above (ArEz

> 0) and below (ArEz
< 0)

the arm base. Solutions above the arm base are mechanically impossible for the
delta arm and thus the forward kinematics solver returns the solution that satisfies

ArEz
< 0. For the inverse kinematics the intersection between a sphere with radius

l and a circular disk with radius L has to be computed for every joint angle. For
the first joint as shown in Figure 3.2 the centre of the sphere is ArP1

= ArE + rAex
with Aex = [1, 0, 0]> while the centre of the circular disk is ArS1

= RAex. Given the
intersection point ArI1 , the joint angle can be recovered as θ1 = arcsin(ArI1z/L). The
joint angles θ2 and θ3 can be computed by performing the same procedure for the
spheres with centres ArP2

,ArP3
, same radius l and the unit disks centred at ArS2
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and ArS3
with radius L. The points ArPi

,ArSi
∀i = 2, 3 can be easily computed as

follows:

ArP2
= ArE + r Cz(120o)Aex, (3.10a)

ArP3
= ArE + r Cz(240o)Aex, (3.10b)

ArS2
= Cz(120o)ArS1

, (3.10c)

ArS3
= Cz(240o)ArS1

. (3.10d)

Front View Side View

Figure 3.2: Two different views of a 3D model of the delta arm used. The green
areas show the virtual spheres and disks used for the solution of the forward and
inverse kinematics.
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Chapter 4

System Overview

4.1 Pre-existing NMPC Method

4.1.1 Software Components

An overview of the different software components of the proposed system is outlined
in Figure 4.1. The NMPC is given full state trajectory commands for the MAV
and the end effector corresponding to a given aerial manipulation task. Based on
those references and the estimated system state, it produces the desired MAV body
moments, collective thrust, and end effector position. The control allocation block is
responsible for converting the moments and thrust into individual motor commands
while the inverse kinematics block computes the desired link angles for the given
end effector position. All algorithms run onboard at a rate of 100 Hz.

Figure 4.1: An overview of the software running onboard the MAV in an aerial
manipulation task using the pre-existing NMPC. ROS is used to interface with
the MAV and the motion capture system while all the other software blocks are
implemented as a single executable.

4.1.2 Real-world Drone Platform

The real-world experiments presented in section 6.2 were performed using a custom
built hexacopter equipped with a sideways mounted delta arm manipulator. The
MAV features a frame with a 550mm diameter, a Pixracer flight controller running a
modified version of the PX4 firmware, and an Intel NUC-7567U onboard computer
running Ubuntu 16.04. It uses 960KV motors and DJI 9450 propellers. The delta
arm uses magnetic universal joints for the connection of the servos with the end
effector which maximises the workspace, minimises backlash and allows the arm
to disassemble during possible crashes preventing it from breaking. The system is
powered by a 4S 4500mAh battery and has total weight of 2.6 kg. A photo showing

15
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Table 4.1: Numeric values of real-world MAV and Arm parameters

Jx 0.042 kg m
2

Jy 0.054 kg m
2

Jz 0.110 kg m
2

km 1.58× 10
−2

Nm/N

me 0.058 kg

ks 42.95 N m
−1

R 7.2 cm

r 2.5 cm

L 6.5 cm

l 20.2 cm

the used platform and its different components is shown in Figure 4.2. The arm uses
three Dynamixel AX-18A servo motors which are comparably fast and accurate but
have limited maximum torque. The end effector holds the pen which is mounted
on a spring to provide additional compliance. We set the coefficient of the contact
model in Equation 3.4 to match the used spring. The applied force is measured
by a SingleTact force sensor mounted at the end of the spring. We estimate the
spring coefficient ks by measuring the applied force for known tip displacements.
The dimensions of the delta arm are based on a highly detailed CAD file and were
verified manually. We measured the inertia of the MAV J by checking its angular
response to constant input torque while it is hanging to freely rotate. The thrust to
moment coefficient km is measured using a trust stand. A table with the numeric
values of the system parameters is given in Table 4.1.

Figure 4.2: The aerial manipulation platform used in the Aerial Writing experiments
in described Section 6.2 with labels for its individual components.

4.2 Multimodal Feedback Pipeline

4.2.1 Software Components

In addition to the NMPC pipeline illustrated in Figure 4.1, the multimodal feedback
requires processing of the visual and tactile measurements to inform the multimodal
feedback components. An overview of the combined software stack is given in Figure
4.3. This illustration is very exhaustive and refers to many details only presented
later on in Section 5. The reader is advised to come back after finishing that section
to get a in-depth understanding of the software stack.
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Figure 4.3: An overview of the software running onboard the MAV in an aerial
manipulation task using the extended multimodal feedback pipeline. ROS is used to
interface with the MAV and its sensors as well as to parallelise the computationally
demanding template rendering and the time-critical state updates.

The three sensors (camera, force sensor and drifting SLAM) are shown in light green
on the left. The Sensor Node takes care of the computationally demanding visual
processing. Based on the reference trajectory and the drifting odometry estimate
(red), it renders the template image and masks out the end effector, both as de-
scribed in Section 5.2.2. This further requires the latest estimates of the non-drifting
MAV position (green), the Whiteboard orientation (blue) and the end effector po-
sition (orange). Combining this with the current camera image, the Sensor Node
performs the template matching and passes the resulting pixel measurements ũ, ṽ
to the Filter Node. The detection of the AprilTag mounted on the end effector is
done in a separate node. The off-the-shelf detection algorithm runs on the camera
image after cropping out only the expected AprilTag position plus some margin
around it. This is done to speed up the detection and subsequent pose estimation.
The pose measurements based on the detections are passed on. All computations
in the Sensor Node are callback-driven and occur at 30 Hz according to the frame
rate of the camera. The Filter Node takes care of time critical filter updates for
the MAV Position Drift Estimator, the Whiteboard Orientation Estimator and the
End Effector Position Estimator. These are explained in Section 5. The Filter Node
then informs the NMPC Node by updating the estimates of the MAV Position with
respect to the non-drifting World frame and corrected Touch frame Orientation as
well as providing the end effector position estimate used in the Relative End Effector
Controller. All computations in the Filter and AprilTag Node are callback-driven
and happen either at 100 Hz for tactile updates or at 30 Hz for visual updates.

4.2.2 Aerial Writing Simulation

To simplify the development of the feedback pipeline the whole process should
be mapped to a simulation environment. To this end, the popular Gazebo [50]
framework is used as the basis for the simulator. To bootstrap the simulation of
MAVs, Gazebo is extended using RotorS [51] giving easy access to various MAV
models such as the Firefly used in this work and shown in Figure 4.5 as well as
various virtual sensors such as IMU or odometry.

The actual Aerial Writing is simulated through small line segments within the 3D
world of the simulator. To improve computational performance, the segments are
generated in the beginning of the simulation and only shifted around afterwards.
However, the maximal number of segments must still be limited to a couple hundred
in order for the simulation to run at least at half the speed of real-time. Depending
on the font thickness, the amount of line segments is not enough for the entire text
to be drawn. If this is the case, the segment that was shifted the longest ago is
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moved. In other words, the line segments are shifted in a circular FIFO manner.
The segments are blue-coloured square tiles with the dimensions matching the font
thickness. To optimally use the number of segments feasible to simulate, they are
put next to each other such that they form a continuous line. Their orientation is
adjusted to match the velocity of the pen when the respective segment is placed.
Figure 4.4 shows a few line segments up close. The approach of simulating Aerial
Writing through full interaction with the environment in the form of actual drawing
while further running vision in the loop is claimed to be novel according to the
author’s best belief. It is stated as contribution two in Section 1.2.

Figure 4.4: A close up of the line segments shifted in the 3D space of the simulator
to imitate the actual writing process.

4.2.3 Simulator Drone Platform

A virtual model of a Firefly is used as the simulated MAV as depicted in Figure
4.5. A visually and physically accurate replica of the delta arm is attached to its
front. It uses three simulated servo motors to move the end effector which always
remains parallel to the base plate. Similarly to the real system, each servo uses an
internal PID controller to reach angle setpoints sent to it by the NMPC pipeline.

Tip

 
 

Arm

Camera
 

AprilTag

Figure 4.5: The aerial manipulation platform used in the Aerial Writing simulations
presented in Section 6.3 with labels for its individual components.
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Table 4.2: Numeric values of simulated MAV and Arm parameters

Jx 0.035 kg m
2

Jy 0.046 kg m
2

Jz 0.097 kg m
2

km 1.6× 10
−2

Nm/N

me 0.020 kg

ks 5.0 N m
−1

R 7.2 cm

r 2.5 cm

L 6.6 cm

l 21.8 cm

At the tip of the end effector, the pen is mounted to the pen case using a simulated
spring. This simulated spring also features a virtual force sensor which measures
the pressure acting from the pen onto the end effector. On the back of the pen
case, an AprilTag is attached which is used for visual estimation of the true end
effector position. To provide the required visual information for this and other visual
feedback components, a virtual camera is mounted near the delta arm base plate.
The camera has a frame rate of 30 Hz, a rather low resolution of 640×480 pixels and
no camera distortion is assumed. It is free-floating for simplicity but could easily
be attached in such a configuration using a 3D printed mount. Hidden within the
MAV, an odometry sensor provides localisation data as a SLAM system running
onboard would do. As explained in section 5.2 this signal is assumed to be drifting
over time. Table 4.2 shows the numeric values of the simulated system parameters.
In comparison with the real-world system, the spring is chosen to be less stiff to
allow more accurate tracking of force references due to increased compliance. All
other parameters are equal or similar enough to not cause meaningful differences in
simulation.

4.3 Trajectory Generation

As part of this thesis, a trajectory generator was developed to map arbitrary sets
of characters to end effector trajectories. This component is used for both the real
and simulated MAV-arm system.
To this end, the input sequence of letters is separated into smooth segments by
detecting sharp corners and splitting the trajectory there. Corners are detected
based on the angle spanned by the two lines defined through the current candi-
date trajectory point and its predecessor as well as successor, respectively. The
contact segments are then connected by segment flown in detached mode. A con-
stant acceleration motion model is applied to generate trajectories with a smooth
velocity profile. This is of special importance to ensure dynamic feasibility when
approaching sharp corners at the end of a segment, i.e. to make sure the pen reaches
zero velocity before doing drastic direction changes or detaching. An example of a
generated trajectory is shown in Figure 4.6 with the line coloured according to the
end effector velocity. The trajectory generator allows for adjustment to the velocity
and acceleration profile by changing the maximum ‖W vrE ‖ and ‖W arE ‖. It should
be noted here that the trajectory generator is based on a previous implementation
by Qingyue Yan but has been changed significantly over the course of this thesis.
Once the trajectory for the end effector has been computed, the computation of the
reference position W rrB and velocity W vrB for the MAV is performed as follows:

W rrB = W rrE − CWB BrE0
, (4.1a)

W vrB = W vrE − CWB Bω
r × BrE0

. (4.1b)

Here, CWB is the rotation between the MAV Body and World frame, BrE0
denotes
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the nominal end effector position which results in no CoM displacement and Bω
r

is the angular velocity of the MAV. The reference MAV orientation qrWB is chosen
such that the end effector position is always perpendicular to the contact surface,
assuming perfect position tracking. Each trajectory is accompanied by an appro-
priate flag which disables or enables the position tracking for the end effector. This
is achieved by setting the appropriate gains to zero. In that case the NMPC may
decide to move the arm to assist the reference tracking of the MAV due to the CoM
displacement. This potentially unwanted behaviour can be avoided by further pe-
nalising (i.e. by increasing the input gains) the arm displacement from its nominal
position. However, it is an interesting capability enabled by the hybrid modelling
explained in Section 3.2.

Figure 4.6: The generated dynamically feasible trajectory used in the simulations
presented in Section 6.3 with the end effector velocity reference coloured in by going
from dark violet, meaning slow, to bright yellow, meaning fast.
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Multimodal Feedback

As mentioned previously, the pre-existing NMPC method described in Section 3
and evaluated in Section 6.2 relies on external MAV and whiteboard pose measure-
ments while also assuming zero-order delta arm dynamics and perfect knowledge
of its model parameters. In this chapter, the three individual feedback components
to address these potential short-comings are explained. They are informed using
multimodal measurements from both a camera and a force sensor and should allow
the current aerial manipulator to be used for real-world tasks outside of labora-
tory conditions. Further, it is explained how each error source is simulated and
how this relates to the expected error seen in a real-world environment. The pro-
posed pipeline is novel in the sense that it combines task specific visual and tactile
feedback for Aerial Writing and is hence listed as the main contribution in Section
1.2.

5.1 Coordinate Frames

Before introducing the actual method, Figure 5.1 shows the relevant coordinate
frames used in the multimodal feedback pipeline. When compared with the version
for the pre-existing NMPC in Figure 3.1, the Camera frame F−→C as well as the
drifting World frame F−→W

′ and the rotated Touch frame F−→T
′ are added. The latter

two are defined implicitly by assuming both a drifting MAV position as well as an
offset whiteboard orientation. Following this terminology, the true frames F−→W and
F−→T shown in the illustration are not known to the MAV and estimated by the
multimodal feedback.

Figure 5.1: The different coordinate frames used for the multimodal feedback.
Specifically F−→W , F−→B , F−→C , F−→A, F−→E , and F−→T stand for the World, MAV Body,
Camera, Arm, End Effector, and Touch (contact) frame, respectively. Further, F−→W

′

and F−→T
′ denote the drifting World frame and the rotated Touch frame, respectively.

21
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5.2 MAV Position Drift

In the following, the drift simulation is explained before introducing the MAV Po-
sition Drift Estimator and describing its process and measurement model as well as
the respective EKF updates.

5.2.1 Drift Simulation

The MAV pose measurement is simulated to be drifting based on the assumption
of running an onboard Visual-Inertial odometry system. As explained in Section
2.2.1, in a general setup without loop closure, one could expect the drift error
to grow indefinitely as the MAV moves through space. However, for most aerial
manipulation tasks, the MAV would actually remain within a more local region and
hence loop closure could happen regularly. In other words, the VI-SLAM system
keeps relating to the same visual landmarks. Therefore, one would expect the drift
error to remain bounded. To mimic this behavior, the drift simulation is based
on a reverting zero-mean random walk modeled by an Ornstein–Uhlenbeck process.
More specifically, the pose estimate would be expected to oscillate around a slowly
shifting ‘mean’ MAV position which in itself drifts due to biases in the IMU. Such
IMU biases are ignored in the drift simulation and hence the ‘mean’ MAV position
remains at zero. The drift is assumed to affect the position only, orientation as well
as linear and angular velocities are assumed to be correct. Further, all three axes
are assumed to be affected independently. The simulated drift is expressed in the
World frame F−→W and termed W∆rk. At every time step k of the simulation, we
compute the drift as follows:

W∆rk =

∆xk∆yk
∆zk

 =

(
1− ∆t

τ

)
W∆rk−1 +

wp,xwp,y
wp,z

 , (5.1)

wp,i ∼ N (0, ∆tσ2
p) with i ∈ {x, y, z}. (5.2)

Here, ∆t is the time since the simulation step and the time constant τ captures how
quickly the drift reverts back to zero. The variables wp,i denote additive white noise
which, for each time step and axis, is drawn from a zero-mean Gaussian distribution
which spreads wider as the time step ∆t increases.
The drift is added onto the ground-truth MAV position W rB to form the position
part of the drifting odometry measurement W ′rB provided by the SLAM system. As
mentioned, a simplification is made by neither adjusting the orientation qWB nor
the linear and angular velocities of the true MAV pose. Omitting drift on the MAV
yaw is based on the observation that in practice, this DoF will only drift slowly.
Based on this, the relationship between the true World frame F−→W and the drifting
equivalent F−→W

′ can be written through a homogeneous coordinate transform as

TW ′
B =

 CWB W rB + W∆r

0 0 0 1

 . (5.3)

Note that since we assume only translational drift, the odometry orientation qWB

is correct. To illustrate the nature of the simulated drift, Figure 5.2 shows the
odometry position signal provided to the MAV along the x axis, W ′rxB , and the as-
sociated ground-truth value, W rxB , which is fixed to zero. By adjusting the numeric
values of σp and τ the per step noise and the magnitude of oscillations around the
mean can be changed.
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Figure 5.2: An example of simulated drift using the reverting-mean random walk
model. The true value of the MAV position is kept at the origin, i.e. is zero.

5.2.2 Drift Estimation

An Extended Kalman Filter is used to estimate the current drift to then compute
the MAV position with respect to the true World frame. In other words, the goal
is to estimate the difference along all axes between the MAV position in the true
World frame F−→W and the drifting World frame F−→W

′ . We define the EKF state
vector x̂k as follows:

x̂k =

∆x̂k∆ŷk
∆ẑk

 . (5.4)

As for the drift simulation, ∆x̂,∆ŷ,∆ẑ represent the estimated position drift along
all axes expressed in the World frame. The raw odometry sent by the SLAM system
carries the MAV pose with respect to the drifting frame as shown in Equation 5.5a.
By subtraction of the EKF state, this can be transformed into the MAV pose with
respect to the non-drifting World frame following Equation 5.5b:

TW ′
B =

 CWB W
′rB

0 0 0 1

 , (5.5a)

T̂WB =

 CWB W
′rB +−x̂k

0 0 0 1

 . (5.5b)

Prediction

As mentioned in Section 5.2.2, the drift is modeled as a random walk with reverting
mean. Hence, the EKF state prediction simplifies to adding noise to a damped
version of last iteration’s value. The resulting process model is given by

x̂k|k−1 =

(
1− ∆t

τ

)
x̂k−1|k−1 +

wp,xwp,y
wp,z

 , (5.6)

wp,i ∼ N (0, ∆tσ2
p,i) with i ∈ {x, y, z}. (5.7)

Since the drift is simulated, τ and σp are known exactly. In a real-world setting
where drift is caused by a SLAM system, these parameters would have to be identi-
fied to model the drift as closely as possible. From the process model, the prediction
for the filter state x̂k and its associated covariance matrix Pk are derived as
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x̂k|k−1 =
(

1− ∆t

τ

)
x̂k−1|k−1, (5.8)

Pk|k−1 = FkPk−1|k−1F
T
k + Qp, (5.9)

Qp = diag(∆tσ2
p). (5.10)

The matrix Qp captures the process noise and Fk is the trivial Jacobian of the
process model and equals Fk = diag(1− ∆t/τ).

Measurements

The measurement vector z̃k consists of a visual template matching pixel location,

ũ, ṽ, as well as a tactile measurement d̃ which is denoted as follows:

z̃vk =

[
ũ
ṽ

]
, (5.11)

z̃tk = d̃. (5.12)

The measurements ũ, ṽ and the associated visual measurement function hv are ex-
plained in subsection ‘Visual Measurements’ whereas d̃ and the associated tactile
measurement function ht are described in subsection ‘Tactile Measurements’. The
measurement functions are defined separately from one another as follows:[

û
v̂

]
= hv(x̂k|k−1), (5.13)

d̂ = ht(x̂k|k−1). (5.14)

To complete the formulation of the measurement models, noisy measurement pro-
cesses are assumed:

ẑvk = hv(x̂k|k−1) +

[
vu
vv

]
, (5.15)

ẑtk = ht(x̂k|k−1) + vd. (5.16)

Here, the components of the measurement noise vi, i ∈ {u, v, d} are explained in
more detail in the following. Since the measurement update depends on whether a
visual or tactile measurement is being fused into the filter, each equation is given
separately after explaining the respective measurement model.
For all measurement updates presented in this thesis, outlier rejection schemes based
on χ2-tests are used. In the interest of space, the general idea is given here and
the specific implementations are not described. Following the approach in [52], the
measurement residual y and residual covariance S are used to define the validation
gates in Equation 5.17c:

S = HPHT + R, (5.17a)

y = z̃− h( x̂ ), (5.17b)

e2 = yS−1yT ≤ g2. (5.17c)

Here, H is the Jacobian of the measurement model and R the measurement covari-
ance. If a measurement leads to a value of e2 higher than g2 allows, it is considered
an outlier and rejected. Here, g2 depends on the desired confidence level and number
of DoFs, i.e. the number of dimensions in the measurement vector.
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Visual Measurement

The visual measurement is based on performing template matching between the
current camera image and a rendering of what the camera mounted on the MAV
should be seeing according to the planned text to be drawn. In the following, this
approach is explained step-by-step.

Reference Drawing The first concept to be introduced is the reference drawing
shown in Figure 5.3. While the MAV is fulfilling its drawing task, a global
reference drawing is updated continuously. At every iteration, the current
reference for the pen tip, T rP , is coloured in the reference drawing which
represents the entire whiteboard surface in an image. Hence, the reference
drawing carries the answer to the question ’What should the MAV have been
drawing up until this point in time?’

Figure 5.3: An example of the reference drawing showing what lines the MAV
should have been writing onto the whiteboard until the current time step.

Template Image The reference drawing is then projected into a virtual camera
positioned at TWC . This rendering will be referred to as the template image.
On the left of Figure 5.4, the template image corresponding to the reference
drawing in Figure 5.3 is shown. To make the rendered template image cor-
respond to what the actual camera sees, areas that are covered by the end
effector get masked out in the template image. In other words, occlusions
caused by the end effector are replicated in the template image. Occlusions
caused by the push rods are not considered as they are much smaller. The
mask is generated by adding constant offsets to the current end effector po-
sition estimate B r̂E to form its corner points which are then projected into
the virtual camera giving a 2D mask. The end effector position is estimated
based on the AprilTag attached on its back which is explained in more detail
in Section 5.4.2.

Real Image At the same time, the camera perceives the image shown on the right
in Figure 5.4. To ensure temporal consistency, the aforementioned mask is
chosen to be slightly bigger than the actual occlusion and then also applied to
the real image (not shown in Figure 5.4). However, in the current implemen-
tation no tight time-synchronisation is performed as seen in various VI-SLAM
systems, e.g. by using the same trigger signal for the virtual camera and the
rendering of the template image.
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Figure 5.4: The template image (left) showing what parts of the drawing the camera
is expected to see given its current position; and the end effector position and the
real image (right) received at roughly the same time as template image was rendered.

Colour Filtering To increase robustness and performance of the subsequent match-
ing, both the template and camera image are filtered to only include the draw-
ing. As the pen colour is blue, the filtering can be done effectively through
colour segmentation in HSV space.

Template Matching Based on the camera image and the template image, one can
determine how far the camera drifted away from its expected position. This
is done by registering the camera image to the template through template
matching.

The actual measurements ũ, ṽ are the pixel coordinates of the template image centre
after being matched to the camera image as previously described by Equation 5.11.
This is illustrated on the left in Figure 5.5 where the template image is shown in
grey and the camera image in blue. To arrive at ũ, ṽ, the match location (shown in
green) is subtracted from the size centre point of the template image (shown in red).
From this illustration, it can further be seen that in order to measure deviations
between the expected and actual camera position, the FoV of the virtual camera
has to be bigger than the real one. By scaling the FoV ratio, a limit on how far the
MAV position is expected to drift away from its measured value can be set.

The template matching is performed using the standard OpenCV [53] implemen-
tation. To allow real-time performance, a fast matching metric based on the Nor-
malised Squared Sum of Differences is chosen. When matching the camera image
C with the template image T, the former is shifted across the latter computing the
template matching metric shown in Equation 5.18:

R(x, y) =

∑
x
′
,y

′
(
C(x′, y′)− T (x+ x′, y + y′)

)2∑
x
′
,y

′ C(x′, y′)2
∑
x
′
,y

′ T (x+ x′, y + y′)2
. (5.18)

The best match is located at the minimum location of the 2D matching metric
matrix. An example of such a result matrix is shown on the right in Figure 5.5
which further encodes the measurement uncertainty shown as the green ellipse and
explained in more detail later on. To perform all these steps in real-time, the camera
resolution is chosen to be rather low at 640× 480 pixels.
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u
v

Template Image

Camera Frame

~~
~~

Figure 5.5: Left: Illustration of how the visual error measurement is computed.
The blue frame corresponds to the camera image while the template image is grey.
The template match location is shown in green and the actual measurement in red.
Right: The corresponding matching metric matrix (inverted for visualisation). The
ellipse shown in green is used to estimate the visual measurement uncertainty.

Visual Measurement Model

The remaining question is how the visual measurement and the EKF state are
associated, i.e. the measurement model hv. To better understand the following
equations, please refer to Figure 5.6 which visualises all the following steps.

Camera Ray By projecting the camera image centre point out of the camera based
on its expected position W rC one arrives at the ray vector Wk shown in blue
in Figure 5.6. This ray can be computed by rotating a unit-vector along the z
axis of the Camera frame, Cez, by the orientation of the camera with respect
to the World frame, CWC :

Wk = CWC Cez. (5.19)

Intersection Intersecting the camera ray with the whiteboard plane yields the
nominal intersection point T rI shown as the left dot. Here, WnT denotes the
surface normal of the whiteboard and W rT is the Touch frame origin. The
intersection can be formulated as

T rI = W rC − t Wk, (5.20)

t =
(W rC −W rT ) ·WnT

Wk ·WnT
. (5.21)

Transformation The nominal intersection point T rI is then transformed from
Touch to Camera frame resulting in CrI shown as the right dot. Here, TCB
and TWT are fixed and assumed to be known. T̂WB depends on the EKF
state as it is the estimate of the MAV pose in the non-drifting World frame.
In summary, one can formulate

CrI = TCB
(
T̂WB

)−1
TWT T rI . (5.22)
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Projection As shown in red, projection of this point back into the camera leads
to the expected values for the visual measurements, i.e. û and v̂. Here, K is
the camera’s intrinsic matrix with the per image axis focal lengths fu, fv and
principal points cu, cv. The z component of the nominal point, CrI,z, is used
for normalisation. The resulting visual measurement model first introduced
in Equation 5.13 can now be written as

hv(x) =
1

CrI,z
K CrI , (5.23)

K =

[
fu 0 cu
0 fv cv

]
. (5.24)

Figure 5.6: Illustration of the visual measurement with the whiteboard and the
camera mounted on the MAV.

In essence, the visual error presented here corresponds to a reprojection error: if the
MAV position estimate T̂WB is accurate, the nominal intersection point CrI (red)
will be projected into the camera’s centre and the visual EKF innovation would be
zero. However, if the estimate is off, there will be a non-zero error between the two
points which will effect the estimate. This allows the method to track the drift in a
frame-to-frame manner. Based on this visual measurement model, the measurement
step for an incoming camera image is defined as:

Kv
k = Pk|k−1H

v
k(x̂k|k−1)T

(
Hv
k(x̂k|k−1)Pk|k−1H

v
k(x̂k|k−1)T + Rv

k

)−1
, (5.25)

yvk = z̃vk − hv(x̂k|k−1), (5.26)

x̂k|k = x̂k|k−1 + Kv
ky
v
k, (5.27)

Pk|k =
(
I−Kv

kH
v
k(x̂k|k−1)

)
Pk|k−1. (5.28)

Here, Kv
k is the visual Kalman gain, Hv

k is the Jacobian of the visual measurement
model and Rv

k the measurement noise. yvk denotes the visual EKF innovation. The
visual Jacobian is defined by

Hv
k(x) =

[
∂u/∂x1

∂u/∂x2
∂u/∂x3

∂v/∂x1
∂v/∂x2

∂v/∂x3

]
. (5.29)

It captures the non-linear measurement model as a first-order approximation and
allows the process uncertainty to be propagated correctly. It is derived symbolically
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using MATLAB and evaluated at run-time. In the interested of space, the full ex-
pression is omitted here. The measurement uncertainty Rv is contained implicitly
in the matching metric matrix shown on the right in Figure 5.5. The green ellipse
shown corresponds to a level-set of the underlying 2D Gaussian distribution describ-
ing the uncertainty in ũ and ṽ as well as the correlation between them. As shown
in [47], one can retrieve the noise characteristics from the matching metric matrix
by appropriately scaling the error ellipse to contain 68% of the matching residual.
The ellipse dimensions then represent a rotated version of the measurement noise
covariance matrix as shown in Equation 5.30 where a, b denote the semi-major and
semi-minor axes of the ellipse:

Rv
xy =

[
a2 0

0 b2

]
. (5.30)

By rotating Rv
xy by the ellipse angle θ, one arrives at the respective covariance

matrix in the (u, v) pixel space which is used as the measurement uncertainty:

Rv =

[
cos θ − sin θ
sin θ cos θ

]
Rv
xy

[
cos θ sin θ
− sin θ cos θ

]
. (5.31)

Tactile Measurement

The second modality in use is tactile feedback from the force sensor mounted to
measure the pressure on the pen. To get a better understanding of the variables
used in the following, please refer to Figure 5.7. The measured force is denoted as
F̃ based on which one can estimate the displacement of the spring s̃ as follows:

s̃ =
F̃

ks
. (5.32)

The spring constant ks is required to be known in advance. Using the zero-
displacement pen length D, the length of the part of the pen which sticks out
of the end effector can then be expressed as done in Equation 5.33 as follows:

d̃ = D − s̃. (5.33)

This is used as the actual measurement in the EKF updates which leads the tactile
measurement defined previously in Equation 5.12.

Tactile Measurement Model

As for the visual measurement, the remaining question is how this measurement
relates to the current filter state, i.e. how the tactile measurement model is defined.
Based on d, one can define the point where the pen touches the whiteboard as a sim-
ple z offset in the End Effector frame as shown in Equation 5.34a. As expressed in
Equation 5.34b contact point can then be transformed from the End Effector frame
to the Touch frame using constant coordinate transforms and the MAV position
estimate which depends on the EKF state. In combination, this yields

ErP =
[
0 0 −d

]T
, (5.34a)

T rP = TTW T̂WB TBA TAE ErP . (5.34b)
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Figure 5.7: Illustration of the tactile measurement with the whiteboard and the end
effector with the pen attached on its tip.

In the Touch frame, one can now define the Contact Condition which states that
as long as the pen in touch with the whiteboard, the z component of the contact
point must be zero:

T rP,z
!
= 0. (5.35)

This condition can now be solved for the expected tactile measurement d̂ which
is done symbolically in MATLAB. Since the resulting expression for the tactile
measurement model first introduced in Equation 5.14 is long and not insightful, it
is not explicitly stated here. Based on this, the measurement step for an incoming
tactile measurement is

Kt
k = Pk|k−1H

t
k(x̂k|k−1)T

(
Ht
k(x̂k|k−1)Pk|k−1H

t
k(x̂k|k−1)T +Rtk

)−1
, (5.36)

ytk = z̃tk − h
t(x̂k|k−1), (5.37)

x̂k|k = x̂k|k−1 + Kt
ky
t
k, (5.38)

Pk|k =
(
I−Kt

kH
t
k(x̂k|k−1)

)
Pk|k−1. (5.39)

Here, Kt
k is the tactile Kalman gain, Ht

k is the Jacobian of the tactile measurement
model and Rtk the measurement noise. ytk denotes the tactile EKF innovation. The
tactile Jacobian is defined as:

Ht
k(x) =

[
∂d/∂x1

∂d/∂x2
∂d/∂x3.

]
(5.40)

Equivalent to the visual update, this captures the measurement model as a first-
order approximation and allows the process uncertainty to be propagated. It is
also derived symbolically using MATLAB and evaluated at run-time. Again, the
full expression is omitted in the interested of space. As shown in Equation 5.16,
the tactile measurement is assumed to be noisy. The tactile measurement noise
covariance is defined as Rt = σ2

d. The virtual force sensor is simulated accordingly,
hence it provides measurements with noise covariance σf . The connection between
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the tactile measurement d and the actual force measurement is defined by assuming
linear error propagation as follows:

σd =
σf
ks
. (5.41)

As for the drift process noise characteristics, this parameter would have to be iden-
tified to match the force sensor used in a real-world experiment.

5.3 Whiteboard Orientation Misalignment

In the following, the whiteboard misalignment simulation is explained before in-
troducing the Whiteboard Orientation Estimator and describing its process and
measurement model as well as the respective EKF updates.

5.3.1 Misalignment Simulation

The whiteboard orientation is simulated to be misaligned based on the assumption
of having a wrong calibration of the Touch frame F−→T . This is based on experience
gathered in the real-world experiments done with the pre-existing platform which
are presented in Section 6.2. Even when using optimisation-based calibration oper-
ating on thousands of external pose measurements of the whiteboard surface, the
found whiteboard orientation was usually off by up to 2 degrees while the position
calibration was more accurate. Such small misalignments in the orientation cali-
bration then lead to the MAV flying too close to the whiteboard which causes it to
apply too much pressure and eventually to disassembly of the magnetic links in the
delta arm. If rotated in the other direction, it leads to the MAV flying too far away
and causes the pen to lose contact which interrupts or fully stops the writing.
The orientation misalignment is simulated and modelled as subsequent rotations in
the yaw ∆ψ (around the z axis) and the pitch ∆θ (around the y axis) of the Touch
frame with respect to the World frame. In the nominal case, the roll rotation ∆φ
is perpendicular to the pen and does therefore not affect the drawing. To simplify
the approach, it is therefore ignored entirely. The values of yaw and pitch are fixed
throughout a mission and chosen randomly based on the following distributions:

∆θ ∼ N (0, σ2
r), (5.42)

∆ψ ∼ N (0, σ2
r). (5.43)

The relation between the true Touch frame F−→T and the rotated equivalent F−→T
′ can

be written through a homogeneous coordinate transform as follows:

TWT
′ =

Cy(∆θ) Cz(∆ψ) CWT W rT

0 0 0 1

 . (5.44)

Here, Ci(·) denotes a 3D rotation matrix around the i axis. Note that since we
assume no translational misalignment, the whiteboard position W rT is correct. To
illustrate the nature of the simulated orientation misalignment, Figure 5.8 shows
the actual physical whiteboard in grey and the misaligned calibration in green.
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Figure 5.8: Visualisation of the whiteboard orientation misalignment with the true
physical whiteboard in grey and wrong calibration in green.

5.3.2 Misalignment Estimation

As for the drift estimation, an Extended Kalman Filter is used to estimate the
orientation misalignment of the whiteboard to arrive at the correct Touch frame.
The goal is hence to estimate the pitch and yaw offsets ∆θ,∆ψ. Therefore the EKF
state vector x̂k is defined as:

x̂k =

[
∆θ̂k
∆ψ̂k

]
(5.45)

Here, ∆θ̂,∆ψ̂ represent the estimated pitch and yaw of the Touch frame misalign-
ment with respect to the World frame. By performing the inverse rotations as done
during simulation, one can define the estimated true Touch frame as:

T̂WT =

Cz(−∆ψ̂) Cy(−∆θ̂) CWT
′ W rT

0 0 0 1

 . (5.46)

Prediction

As mentioned in Section 5.3.2, the whiteboard misalignment is modeled as a fixed
rotation around pitch and yaw. Hence, the state prediction is trivial yielding the
following process model:

x̂k|k−1 = x̂k−1|k−1 +

[
wn,θ
wn,ψ

]
, (5.47)

wn,i ∼ N (0, σ2
n) with i ∈ {θ, ψ}. (5.48)

Here, the noise is added to avoid numerical instabilities arising from ever decreasing
state uncertainty as the mission goes on. Hence, σn is chosen very small. From the
process model, the following predictions for the filter state x̂k and its associated
covariance matrix Pk are derived:
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x̂k|k−1 = x̂k−1|k−1, (5.49)

Pk|k−1 = Pk−1|k−1 + Qn, (5.50)

Qn = diag(σ2
n). (5.51)

The matrix Qn captures the noise added for numerical stability. The Jacobian of
the process model is identity and can thus be dropped from the equations.

Measurements

In contrast to the drift estimation, the whiteboard orientation estimation is just
informed by the tactile measurements. This is for two reasons: first, both the
pitch and yaw are fully observable only given the tactile feedback. Second, the
whiteboard misalignment is a constant offset which does not change gradually like
the drift. The visual feedback is more suited for slow changes as it relies on the
camera and template images being similar to each other such that the template
matching does not fail. The whiteboard misalignment is an abrupt and fixed error
potentially leading to strongly distorted drawings which could not be matched to
the undistorted template image. Hence, the measurement z̃tk just includes the tactile
measurement d̃ defined before in Equation 5.12. The associated tactile measurement
model is based on the same contact condition (see Equation 5.35) but now assumes

the MAV position to be fixed and the Touch frame estimate T̂WT to be the varying
parameter. More specifically, the pen contact point is transformed to the Touch
frame as follows:

T rP = T̂TW TWB TBA TAE ErP . (5.52)

As before, solving this condition for the expected tactile measurement d̂ yields the
tactile measurement model. This is done symbolically in MATLAB and the actual
expression is again omitted in the interest of space and since the term does not
offer any more insights. In contrast to the drift estimation, the expected tactile
measurement now depends on the EKF states being the pitch and yaw estimates
∆θ̂,∆ψ̂. The measurement step for an incoming tactile measurement can now be
written in the standard EKF form as done before in Equations 5.36 to 5.39. Again,
the tactile Jacobian Ht

k is derived symbolically using MATLAB but is now defined
as follows:

Ht
k(x) =

[
∂d/∂x1

∂d/∂x2

]
. (5.53)
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5.4 Relative End Effector Position Control

In the following, the simulation of the mismatches in the delta arm model is ex-
plained which cause an offset in the end effector positioning. Then, the End Effector
Position Estimator and the closely connected Relative End Effector Controller are
introduced.

5.4.1 End Effector Offset Simulation

The key assumption for this third error source is a mismatch between the delta arm
model used by the NMPC method and the actual physical delta arm. This could
be wrongly measured components dimensions or unknown offsets in the achieved
servo angles. Such mismatches then lead to position offsets in the end effector
control. Furthermore, since the pre-existing NMPC method assumes a zero-order
dynamics model for the end effector, the true end effector position always lags
behind its control input as the true delta arm does not have an instantaneous
dynamic response. Two different approaches to simulating the root-cause of the
end effector offsets are taken:

Servo Offset This approach assumes that the servos do not achieve the exact
angles that they are commanded to due to wrong calibration of the zero angle
and other inaccuracies. This is modelled as additive and multiplicative offsets
on the servo angles:

θ′ = θ +∆θ, (5.54)

∆θi = αiθi + βi, (5.55)

αi, βi ∼ N (0, σ2
s) with i ∈ {1, 2, 3}. (5.56)

Here, θ′ are the three servo angles which are achieved by the servos and θ
the angle commands sent by the NMPC. The angle offsets are captured in ∆θ
which depend linearly on the current angle commands θ as shown in Equation
5.55. Here, α denotes the multiplicative per-servo factor and β an additive
per-servo offset.

Length Offset Here, the NMPC model of the push rod length l (please refer to
Figure 3.2) is assumed to be off by a fixed but random length error:

l′ = l +∆l, (5.57)

∆l ∼ N (0, σ2
l ). (5.58)

Here, l′ is the true value of the physical delta arm and l is the wrong length
used by the NMPC. The length mismatch is captured in ∆l. The same offset
is added to all three push rods according to the parallel manipulator condition
which ensures that the base plate and the end effector remain parallel.

Both these errors in the NMPC model have the same effect on the end effector
position control of the pre-existing NMPC which is fully model-based: there will be
a non-zero distance between the model-based end effector command, ArcE , and its
actually achieved position, ArE .
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5.4.2 End Effector Offset Estimation

In order to remove the offset between the commanded and achieved end effector
position, the latter has to be known to allow any reasoning about the current offset.
Given that the delta arm model used by the NMPC is wrong, the achieved end
effector position can no longer be recovered based on the forward kinematics model
since it includes these errors. Instead, it is estimated based on visual observations
of an AprilTag attached to the back of the pen case. Figure 5.9 shows the AprilTag
in relation to the delta arm and the camera which was already used for the visual
feedback to estimate MAV position drift.

Figure 5.9: Visualisation of the AprilTag attached to the back of the end effector,
the delta arm and the camera. The AprilTag is used to estimate the true end
effector position in case of delta arm model mismatches.

The AprilTag is detected using an off-the-shelf ROS-wrapper [54] of the popular
AprilTag3 framework [55]. It also provides estimated 3D pose measurements of
the AprilTag, which we denote as Ar̃E . In order to allow robust and yet aggressive
tracking of the end effector position, these pose measurements are fused in a Kalman
filter resulting in the end effector position estimate Ar̂E . The state vector x̂k of this
Kalman filter is defined as follows:

x̂k =

x̂kŷk
ẑk

 . (5.59)

Here, x̂, ŷ, ẑ are the estimated end effector positions along all axes in the End
Effector frame. In the following, the process and measurement models are described
as well as the respective KF updates.

Prediction

Based on the the end effector commands sent by the NMPC and assuming somewhat
continuous motion of the end effector, a guess about the true end effector motion
can be made yielding the process model in Equation 5.60 stating

x̂k|k−1 = x̂k−1|k−1 +∆rE,k +

we,xwe,y
we,z

 . (5.60)
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Here, ∆rE denotes the difference between the last model-based end effector com-
mand and the current one. This command change is computed as described Equa-
tion 5.61 while we,i denotes additive white noise which is added on each axis:

∆rE,k = ArcE,k − ArcE,k−1, (5.61)

we,i ∼ N (0, σ2
e,i) with i ∈ {x, y, z}. (5.62)

Measurements

The raw AprilTag measurements, C r̃T , are with respect to the Camera frame and
measure the tag’s position, not the end effector. Hence, the measurements are
transformed to the Arm frame and translated from the back of the pen case to the
end effector in Equation 5.63 where c denotes the pen case length:

Ar̃E =
[
0 0 c

]T
+ TAB TBC C r̃T . (5.63)

This defines the actual measurement used for the Kalman filter as seen in Equation
5.64 stating

z̃k = Ar̃E =

x̃kỹk
z̃k

 . (5.64)

In order to speed up the detection and pose estimation of the AprilTag, the current
end effector estimate is used to crop out a region-of-interest in the camera image at
the expected AprilTag position. The patch has the expected size of the AprilTag
perceived by the camera plus a margin to ensure robustness. The rest of the image is
blacked out. In contrast to the other two Kalman filters presented in this thesis, the
measurement model for the end effector position estimation is trivial as it directly
measures what it estimates, apart from some constant transformations. Therefore,
the measurement is fused into the filter as follows:

Kk = Pk|k−1

(
Pk|k−1 + Rk

)−1
, (5.65)

yk = z̃k − x̂k|k−1, (5.66)

x̂k|k = x̂k|k−1 + Kkyk, (5.67)

Pk|k =
(
I−Kk

)
Pk|k−1. (5.68)

Here, Kk is the Kalman gain and yk denotes the KF innovation. The measurement
noise Rk = diag(σm, σm, 2σm) is set based on experiments in the simulator com-
paring the ground-truth tag position with the measurement. As to be expected, the
measurements parallel to the camera image plane are observed to be quite accurate
while the depth estimate is more noisy. Hence, the measurement noise along the
depth is set to be higher.

5.4.3 End Effector Position Control

The pre-existing NMPC controls the end effector position through the inverse kine-
matics model, hence uses angle setpoints as inputs for the servos. When looking
at the control diagram in Figure 5.10, it can be observed that the model-based
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inverse kinematics act as a feed-forward term providing a slightly offset set of angle
commands θff . The connected delta arm can be viewed as the process plant which
takes the three angles θ as input and positions the the servos accordingly, thus
positioning the end effector at ArE . The KF described in the previous section then
estimates its position based on the AprilTag, yielding Ar̂E . Using the difference
between the model-based end effector position command and the estimate of its ac-
tual position, one can define a position error for the end effector given in Equation
5.69 which states

AeE = ArcE − Ar̂E . (5.69)

However, to include this position error into the servo signal it must first be trans-
formed from position to angle space by applying the delta arm Jacobian Ja as shown
in Equation 5.70:

eθ = JaAeE . (5.70)

The Jacobian Ja is computed numerically using central finite differences on the
inverse kinematics which map end effector positions to servo angles based on the
NMPC model of the delta arm.

Figure 5.10: Control diagram showing the Relative End Effector Position Control
as a cascaded controller around the pre-existing NMPC delta arm control.

The component which still has to be defined, is the Relative End Effector Control
block. It should take the previously defined error term in angle space, eθ as input and
output an appropriate set of angle corrections ∆θ to be added onto the imperfect
model-based angle commands θ. In the following, an appropriate control scheme is
derived by oversimplifying the control loop. The following three assumptions are
made here:

1. The delta arm reacts perfectly to any changes in its input θ, meaning that
it adjusts the servo angles accordingly. In other words, as soon as its input
changes, the output follows.

2. The Visual End Effector Estimation is perfect, i.e. it follows the true end
effector position exactly.

3. The closed-loop behavior around a fixed setpoint given by the feed-forward
term is equivalent to the case when the feed-forward term changes.

Under these assumptions, the control diagram can be simplified in a sense that
the ‘Delta Arm’ block is an open-loop integrator (Assumption 1) while the ‘Visual
End Effector Estimation’ and ‘Inverse Kinematics’ block can be ignored entirely
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Figure 5.11: Simplified control diagram illustrating the implications by the assump-
tions made to derive an appropriate control scheme.

(Assumption 2 and 3, respectively). The resulting control diagram is shown in
Figure 5.11. This diagram is only meant to illustrate the reasoning taken here and
does not represent the real system.
From Figure 5.11, the closed-loop transfer function is worked out and is given in
Equation 5.71 which reads as

H(s) =
1

s+ C(s)
. (5.71)

It can be concluded that given the simplifications made, the closed-loop system is
stable for a simple P-controller, i.e. setting C(s) = Kp. Importantly, no additional
integrator is required to track the reference in closed-loop operation.
However, the assumptions made oversimplify the real system. When running the
feedback loop with a pure proportional controller, the end effector oscillates due to
delays in the delta arm, the visual estimation and other effects. In order to get rid
of these oscillations, a derivative control term is added which provides damping.
The final control law is given in Equation 5.72 with ∆eθ denoting the error change
in angle space as defined in Equation 5.73:

∆θ = Kpeθ +Kd∆eθ, (5.72)

∆eθ =
1

∆t

(
ekθ − ek−1θ

)
. (5.73)

To prevent the derivative component from amplifying high frequency noise, the
error change signal ∆eθ is low-pass filtered before being fed into the PD controller.
This is treated as an implementation detail and therefore omitted in the formulas
above.
It should be noted that the Relative End Effector Position Control scheme described
here is a purely local feedback component for the delta arm. In contrast to the cor-
rection mechanism for the MAV Position Drift and the Whiteboard Orientation, this
feedback loop only includes estimates directly connected to the MAV Body frame
but not its position with respect to the World and Touch frame. It can therefore be
implemented as a cascaded controller around the existing forward kinematics delta
arm control of the NMPC.
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Results

6.1 Appearance-based Precision Evaluation

When looking at existing literature that deals with similar tasks like Aerial Writing
(please refer to Section 2 for more detail on these related works), there seems to be
a lack of a standardised evaluation metric. To cope with this, an appearance-based
precision evaluation is proposed here to be used as the new standard metric for
such tasks. Together with the extensive experimental evaluation (see Section 6.2)
of the pre-existing NMPC platform, this appearance-based precision metric marks
the third contribution presented in this Master thesis according to Section 1.2.
The metric consists of a per-trajectory-point distance error between the completed
actual drawing and a rendering of the full reference trajectory similar to reference
drawing used in the visual feedback and shown in Figure 5.3. The key advan-
tage of this visual error is that it does not depend on any noise or biases in the
pose measurements stemming from the external motion capture used in real-world
experiments presented in Section 6.2. During these, inaccuracies in the pose mea-
surements were observed either caused by bad calibration, poor object visibility, or
marker reflections on the whiteboard surface.
In the following, the computation of the error is explained in more detail: after the
Aerial Writing task is completed, a photo of the final drawing is taken, undistorted
and the whiteboard is cropped out. The image is then filtered in HSV space (similar
as done for the camera image used in the visual drift measurement). Next, the full
reference trajectory is rendered on a black background with the same whiteboard
dimensions and line thickness like in the experiment. Then, both images are then
‘thinned’, meaning that the thick lines get collapsed to one pixel wide lines along
the middle of the stripes. This is done using the thin

1 method in the morphology

package of skimage and should avoid an underestimation of the error due to the
non-zero thickness of the drawn lines. Finally, the two point clouds representing the
actual and intended drawings are registered by running a two-dimensional Iterative
Closest Point (ICP) algorithm [56, 57]. A Python implementation2 of ICP is used
which iteratively minimises the following point-to-point error:

EICP =
∑

i∈Pa
,P

r

(
Rpai + t− pri

)2
. (6.1)

Here, Pa,Pr denote the point clouds of the actual and reference drawings, respec-
tively, and pai ,p

r
i the corresponding nearest neighbour points in each point cloud.

1
Source: https://scikit-image.org/docs/dev/api/skimage.morphology.html

2
https://github.com/ClayFlannigan/icp

39



Chapter 6. Results 40

Minimisation of this error term results in an set rotation matrix R and translation
vector t to register the two point clouds as well as the nearest neighbour distances
for all points. The final nearest neighbour distance is used to evaluate the accu-
racy on a per-trajectory-point level. It should be noted here that this error ignores
constant offsets that are globally consistent for the whole image since the ICP al-
gorithm shifts and rotates the point clouds such that the total nearest neighbour
distance between all points is minimised. Hence, the appearance-based error metric
focuses on inconsistencies within the written trajectory, but not its global position
with respect to the template. It should further be noted that using a point-to-plane
error metric instead would lead to faster convergence. However, this is not crucial
for the offline error analysis and was hence omitted in the interest of a simpler im-
plementation. Finally, the visual error is plotted by showing the point distance as
colour-coded dots on top of the actual drawing in black. Further, the mean error
and its 3-sigma bound are displayed. An example is given in Figure 6.1.

6.2 Real-world Experiments

The real-world experiments shown in the following were conducted for a submission
to RSS 2020 which was accepted and should appear as [9]. The evaluation as well as
the RSS paper writing were a joint effort of Dimos Tzoumanikas and the author of
this thesis. The flights were done in a flight arena and do not include the feedback
components presented in Chapter 5. Hence, the method being evaluated in the
following section is the full work of Dimos Tzoumanikas. In fact, issues during these
experiments inspired the introduction of multimodal feedback to cope with drifting
odometry, misaligned whiteboard orientation and delta arm model mismatches.

6.2.1 Experimental Setup

Throughout the mission, external pose estimates are provided by a Vicon motion
capture system. The contact surface is a 1 × 0.5 m whiteboard for which its pose
TWT is estimated based on Vicon measurements. Each experiment consists of the
following different trajectory stages: (i) approach, (ii) write, and (iii) return home.
The end effector is enabled for the writing trajectory and disabled for the rest,
using the appropriate flags as mentioned in Section 4.3. The results analysis focuses
mainly on the trajectory writing which includes contact, whereas for the other two
parts (approach/return) the MAV performs simple position tracking. The system’s
accuracy is evaluated by comparing the reference trajectories to those estimated
by the Vicon motion capture system in four experiments. In Section 6.2.2 detailed
and repeatable results for two different trajectories, namely RSS and E = mc2,
are presented. Sections 6.2.3 and 6.2.4 then show consistent tracking performance
across varying MAV velocities and text sizes, respectively.

6.2.2 Trajectory Tracking

Figure 6.1 shows the tracking of the RSS trajectory visualised in the Touch frame
F−→T for the end effector and the MAV. In Figure 6.2, both the pen position tracking
error ep and the spring force tracking, i.e. F and its reference F r are shown. The
maximum reference velocity was set to 7.5 cm s−1 and the maximum acceleration
to 2.5 cm s−2. The trajectory consists of four contact segments with a combined
duration of 65 s. Based on the Vicon estimates, the tracking error of the end
effector remains in the [−10, 10] mm range during the contact segments while the
MAV position error is within the [−40, 40] mm range. This highlights the efficacy of
using a manipulator with faster dynamics than the MAV’s for precision tasks such
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as Aerial Writing. Similarly to the above, Figures 6.3 and 6.4 show the trajectory
tracking for the more challenging E = mc2 experiment which contains ten contact
segments with a combined duration of 63 s. Tracking accuracy is similar as before
with the end effector and MAV tracking error in the [−10, 10] and [−50, 50] mm
range. The accuracy can be visually verified since the overlapping segments of the
‘R’ and ‘m’ coincide almost perfectly. Additionally, the consistent approaching and
retracting from the contact surface leads to identical starting points of individual
letter segments, e.g. the three horizontal lines of the letter ‘E’. In both cases, the
maximum error based on the visual error analysis is 10 mm mostly originating
from temporary loss of contact. Possible reasons for this are bad estimation of
the orientation part of the Touch frame transformation TWT , the assumption of a
perfectly flat contact surface being wrong and most importantly the finite accuracy
of the delta arm. The imperfect tracking along the Touch frame normal direction
(shown in blue in Figures 6.2, 6.4) is also reflected in the reference force tracking.
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Figure 6.1: Reference and actual tip position (left) as estimated by Vicon. Blue
corresponds to contact segments while orange refers to free flight. Visual error
(right) between reference and actual tip position. The maximum estimated error is
lower than 10 mm and is located at discontinuous segments as expected.
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Figure 6.2: Reference tracking error of the tip position (top), MAV (middle), and
measured contact force (bottom). The tracking error is plotted in the Touch frame
F−→T . The end effector accuracy is significantly greater than that of the MAV, given
that they remain in the [−10, 10] mm and [−40, 40] mm ranges, respectively.

Repeatability

In order to prove the repeatability of the approach, each experiment was conducted
thrice. Relevant tracking statistics for the MAV and arm are given separately in
Figure 6.5, in which the textured box plots correspond to MAV data and the plain
ones to that of the end effector. The median and upper values for the end effector
are significantly lower than the ones for the MAV, further showing the need of an
aerial manipulator for precise tasks including contact. The MAV tracking accuracy
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Figure 6.3: Reference and actual tip position (left) as estimated by Vicon. Blue
corresponds to contact segments while orange refers to free flight. Visual error
(right) between reference and actual tip position. Similarly as in the RSS experiment
shown in Figure 6.2, maximum error does not exceed 1 cm.
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Figure 6.4: Reference tracking error of the tip position (top), MAV (middle) and
measured contact force (bottom). The tracking accuracy of the end effector is sig-
nificantly greater than that of the MAV, given that they remain in the [−10, 10] mm
and [−50, 50] mm ranges, respectively

along the z axis was the lowest amongst all axes, as this was most affected by the
interaction forces and unmodelled torque disturbances due to servo motion.

Figure 6.5: MAV and end effector box plots of the contact segments for 3 iterations
of the RSS trajectory experiment (left) and the more challenging E = mc2 trajectory
experiment (right).

6.2.3 Velocity Sweep

The aim of the next experiment is to demonstrate the effects of the input velocity
and acceleration on the writing accuracy. Five iterations of the same Hello tra-
jectory experiment were performed while using different velocity and acceleration
profiles with the following maximum velocities and accelerations:

vmax ∈ {7.5, 12.5, 17.5, 22.5, 27.5} cm s−1,

amax ∈ {3.75, 6.25, 8.75, 11.25, 13.75} cm s−2.

Figure 6.6 shows the box plots for the MAV and end effector tracking accuracy
based on the Vicon measurements. The plots show that consistent tracking results
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are obtained in all the different velocity and acceleration settings tested. The nu-
meric values of the tracking error are similar to the ones previously presented with
the end effector achieving sub centimetre accuracy (per axis) while the MAV error is
consistently less than 50 mm. However, by observing the visual error, one can verify
that as the reference velocity increases, the system struggles more with the trajec-
tory segments containing curvature e.g. ‘e’ and ‘o’. In contrast, the performance
on the straight line segments remains similar.
The tracking error of the MAV could be further reduced if the NMPC was given
dynamically feasible trajectories not only for position and velocity but also accel-
eration, jerk, and snap. Regarding the end effector tracking error, it is generally
expected to increase for reference velocities beyond the ones tested here. This is
because the pre-existing control model assumes that the position of the end effector
can be controlled with immediate response which is not the case for a real system.

Figure 6.6: MAV and end effector box plots (top) and visual errors (bottom) for
5 iterations of the Hello trajectory. Different iterations correspond to different
velocity and acceleration profiles.

6.2.4 Text Size Sweep

In Figure 6.7 shows the visual error for the same trajectory in four different text
sizes ranging from 10 to 40 cm. The consistent accuracy observed shows that the
system can handle the fast direction changes imposed by the small scale.
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Figure 6.7: Visual error plot showing consistent results for varying text sizes
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6.3 Simulations

In the following, the multimodal feedback presented in Chapter 5 is evaluated exten-
sively using the Aerial Writing simulation presented in Section 4.2.2. After explain-
ing the experimental setup, a baseline is set during which no errors are simulated
or estimated. Then, each of the three error sources and feedback components is
evaluated individually. Finally, all error sources are activated and estimated, which
corresponds to a real-world Aerial Writing task outside the laboratory conditions of
a flight arena as is used in the experiments shown in Section 6.2. For an overview
of the scenarios described here, please refer to Table 6.1.

Scenario Name Code Simulated Estimated

Baseline B None None

Drift D Drift None
Corrected Drift CD Drift Drift

Whiteboard Orientation W Whiteboard None
Corrected Whiteboard Orien. CW Whiteboard Whiteboard

Length Offset L Length Offset None
Corrected Length Offset CL Length Offset End Effector Offset
Servo Offset S Servo Offset None
Corrected Servo Offset CS Servo Offset End Effector Offset

Combined A All None
Corrected Combined CA All All

Table 6.1: Overview of simulation scenarios. The first two columns state the sce-
nario name and code, followed by which error source(s) are simulated and which
are estimated, i.e. should be corrected for.

For each scenario, 5 iterations with randomly set drift profiles, whiteboard misalign-
ment and delta arm model mismatches are performed. Full results are shown for one
iteration only, i.e. the pen tracking error, the spring tracking error, the estimated
errors and corrections as well as the actual and template drawing and the visual
error between them. The repeatability of the approaches is shown in box plots of
the spring and pen tracking error for all 5 iterations.

6.3.1 Experimental Setup

The experiments are performed in the simulation environment presented in Section
4.2.2 using the virtual MAV-arm system introduced in Section 4.2.3. The simulator
runs along-side all other components on a powerful Desktop PC with Ubuntu 16.04
installed. Due to the high number of line segments used for the Aerial Writing, the
simulator runs at about half the speed of real-time. However, thanks to the inte-
gration of ROS and Gazebo, the pre-existing NMPC and the multimodal feedback
is still running in real-time compared to the simulated time. It was verified experi-
mentally that the feedback pipeline alone would allow true real-time performance.
The overall simulation setup with the true Touch frame F−→T and non-drifting World
frame F−→W is shown in Figure 6.8. The noise parameters used in the multimodal
feedback are set to the values shown in Table 6.2. They are kept constant to limit
the amount of scenarios to be compared with each other. For all trajectories, the
maximum reference velocity was set to 5.0 cm s−1 and the maximum acceleration
to 5.0 cm s−2.
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Figure 6.8: Overview of simulation setup with true Touch and World frame orien-
tation given for reference.

Parameter Meaning Value

σd Force Sensor noise 1 mN

σp Drift Process noise 1.5 mm/
√

s

τ Drift Time constant 100 s
−1

σr Whiteboard Orientation offset 0.02 rad

σn Whiteboard Process noise 3 ∗ 10
−5

rad

σs Servo offset 0.1 rad
σl Length offset 3 mm
σe End Effector Process noise 0.1 mm
σm End Effector Measurement noise 2 mm
Kp End Effector Control P gain 1.0
Kd End Effector Control D gain 0.05

Table 6.2: Overview of numerical values assigned to noise parameters. The first
two columns state the parameter name and meaning, followed by the actual value.

6.3.2 Baseline

Scenario B shows the performance of the underlying, pre-existing NMPC without
any errors being simulated or feedback in place. This shows how well the algo-
rithm works in simulation, setting a baseline to calibrate the results shown in the
subsequent sections.

Figure 6.9 plots both the pen position tracking error ep along all axes in the World
frame and the spring displacement tracking, i.e. s and its reference sr. The pen
tracking error remains in the one millimetre range while the spring tracking is
very accurate as well. The approach phase of the MAV towards the whiteboard is
cropped out in all figures, hence the plot starts at t ≈ 20 s. The segments with
grey background mark phases during which the pen was supposed to be in contact
with the whiteboard. The first contact phase corresponds to the ‘S’, the second one
to the vertical line in the ‘R’ after which the MAV detaches and flies back to the
top again. Then the third contact phase starts corresponding to the rest of the ‘R’
while the fourth phase is the ‘L’.

The baseline visual error is shown in Figure 6.10. As to be expected based on the
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Figure 6.9: Pen tracking error (top) and Spring tracking (bottom) for scenario B.

accurate pen tracking, the visual error is very small as well. The sub-millimetre 3-
sigma bound underlines the close-to-perfect writing precision. Overall, it is shown
that the pre-existing NMPC method leads to extremely accurate tracking of the pen
trajectory when used in the simulator. This validates the Aerial Writing simulation
setup as well as the virtual MAV and delta arm replicas.
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Figure 6.10: The actual drawing on the whiteboard (left) and the associated visual
error for scenario B.

6.3.3 MAV Position Drift

Two different scenarios are evaluated here: in scenario D the MAV position drift
described in Section 5.2.1 is simulated but not corrected. In scenario CD, the drift
is simulated and the MAV Position Drift Estimator is turned on to correct for it.

Drift

As plotted in Figure 6.11, the pen tracking error in scenario D drifts along all three
axes. According to the reverting-mean assumption, the MAV position drifts around
the true position by up to 2 cm. This translates directly into a pen tracking error.
It should be noted here that the error along x is zero as long as the pen is in
contact as its position is limited along this axis by the whiteboard as illustrated
by Figure 6.8. Instead, the error along this axis translates to bad tracking of the
spring displacement as seen in the lower plot.
The drifting MAV position has a strong effect on the visual writing quality as seen
in the appearance-based error plotted in Figure 6.12. The most obvious mistake is
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Figure 6.11: Pen tracking error (top) and Spring tracking (bottom) for scenario D.

the detachment during the final part of the ‘S’. Due to drift along the x axis, the
pen loses contact with the whiteboard and stops writing. Further, the final drawing
misses size and position consistency between the letters and some lines appear
strongly slanted, e.g. the vertical and horizontal lines of the ‘L’. The poor writing
performance is also reflected in the 3-sigma bound which now indicates errors in
the centimetre range. It should be noted here that the drift simulation only starts
after the approach phase is finished and the pen attaches to the whiteboard. This
is done to avoid constant offsets that could not be rectified by the vision-based drift
estimation which is relative to the initial stroke drawn onto the whiteboard.
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Figure 6.12: The actual drawing on the whiteboard (left) and the associated visual
error for scenario D.

Corrected Drift

For the scenario CD, the MAV Position Drift Estimator explained in Section 5.2.2 is
turned on and the NMPC gets informed accordingly. In Figure 6.13, the estimated
EKF states are plotted as continuous lines and the true value as dotted lines.
As long as the pen is in contact, the drift is estimated accurately. Especially the es-
timate along the x axis, ∆x̂, is tracked very closely. It coincides with the DoF along
the spring and thus profits from direct and highly sensitive feedback. In contrast,
the visual feedback cannot provide such accurate tracking due to discretisation er-
rors in the camera’s pixel space as well as time delays in the measurements i.e.
missing image synchronisation. Therefore, the estimates ∆ŷ and ∆ẑ are not quite
as exact but still follow the true value.
Once the pen detaches from the whiteboard, there is no more tactile measurements
from the force sensor. Hence, the estimate ∆x̂ no longer follows the true drift. The
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other two DoFs are still tracked loosely by the visual feedback. However, as the
drift along x progresses, the template image, e.g. the one shown in Figure 5.4, will
be rendered at the wrong scale. As the scale discrepancy between the template and
actual image grows, the template matching performance deteriorates or even fails
completely causing the visual feedback to stop. This effect can be seen in Figure
6.13 at t ≈ 37 s where ∆x̂ is not updated anymore and the estimate along ∆ŷ starts
to drift away from the true value. Another issue with the visual feedback can be
seen at t ≈ 105 s where ∆ŷ and ∆ẑ are no longer updated. This is caused by the
small FoV of the camera which causes it to only see straight lines in one direction,
the horizontal line of the letter ‘L’ in this case. This leads to high invariance of the
template match in one direction. The EKF hence rejects the measurements as not
reliable enough. In summary, the camera requires salient structures to perform the
template matching based registration reliably.

Figure 6.13: The estimated EKF states of the MAV Position Drift Estimator (con-
tinuous) and the true drift (dotted) for scenario CD.

Figure 6.14: Pen tracking error (top) and Spring tracking (bottom) for scenario CD.

Overall, the accurate estimation of the MAV position drift allows to correct for
errors as shown in Figure 6.14. For contact periods, the pen tracking error remains
in the low millimetre range while the spring tracking is close to perfect. The massive
improvement is further reflected in the visual outcome of the Aerial Writing shown in
Figure 6.15. The visual error is consistently very low, aside some minor inaccuracies
caused by delayed drift estimation, e.g. the last bit of the ‘S’. The 3-sigma bound
is brought down to the low millimetre range.
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Figure 6.15: The actual drawing on the whiteboard (left) and the associated visual
error for scenario CD.

Repeatability

To show that the drift estimation works for random drift profiles, scenario D and CD

are repeated 5 times. For each iteration, the two scenarios use the same simulated
drift but it is varied across iterations. Figure 6.16 depicts the resulting box plot of
the spring and pen tracking error along all axes with no feedback on the left and the
drift estimation enabled on the right. It can be seen that the drift along x is tracked
particularly tightly, since the affected error es is very close to zero. The other two
axes are still tracked well, but not quite as tightly due to the less immediate visual
feedback. Nevertheless, the error terms epy and epz are reduced from centimetre down
to low millimetre range. One can see that epy is not reduced quite as much. This
is caused by significant occlusions stemming from the push rods when first starting
to write the letter ‘S’. This causes a small offset along the direction of motion, y
in this case, which cannot be rectified afterwards. This can also be seen in Figure
6.13 where ∆ŷ is always slightly above the true value.

It should be noted here again that the error ex is zero as long as the pen touches
the whiteboard surface as it limits the pen position along the x axis as illustrated
in Figure 6.8. Instead, the error along this axis translates to bad tracking of the
spring displacement.

Figure 6.16: Box plot of spring and pen tracking errors for 5 iterations for scenario
D (left) and CD (right).
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6.3.4 Whiteboard Orientation Misalignment

In scenario W the Whiteboard orientation misalignment described in Section 5.3.1 is
simulated but not corrected. In scenario CW the Whiteboard Orientation Estimator
is turned on and informs the NMPC accordingly.

Whiteboard Orientation

Locally, the whiteboard found in the physical world is either further away or closer
to the pen than expected, thus pushing back less or more. In contrast to the drift
which affects all axes equally, the whiteboard misalignment therefore mostly affects
the x axis, i.e. the spring displacement. As shown on top of Figure 6.17, the pen
tracking errors epy and epz are close to zero. Since the whiteboard limits the pen
position along the x axis by pushing back on it, the error epx appears to be zero as
well. However, when looking at the bottom of Figure 6.17 it becomes clear that
this error is simply absorbed by the spring getting displaced. Since the whiteboard
is not translated but rotated, the effect of pushing back more or less should vary as
the pen moves across the whiteboard. This can be seen in Figure 6.17 where the
displacement error starts high as the whiteboard is rotated to the back in the upper
left corner. While moving across the surface, more and more pressure is applied.

Figure 6.17: Pen tracking error (top) and Spring tracking (bottom) for scenario W.

The visual error of the misaligned whiteboard is depicted in Figure 6.18. The 3-
sigma bound indicates sub-centimetre accuracy in terms of visual appearance. Since
the whiteboard is rotated to the back in the upper left corner, the pen briefly loses
contact when writing the letter ‘S’, translating to a large error in the visual metric.
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Figure 6.18: The actual drawing on the whiteboard (left) and the associated visual
error for scenario W.
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Corrected Whiteboard Orientation

For scenario CW, the Whiteboard Orientation Estimator explained in Section 5.3.2
is turned on and informs the NMPC. In Figure 6.19, the estimated EKF states
are plotted as continuous lines and the true values as dotted lines. As soon as the
pen touches the surface, the estimates jump close to the correct value. As the pen
keeps writing the first letter ‘S’, the estimate keeps converging towards the true
value. As the letter ‘S’ contains both downward and sideways motion, both the
pitch estimate ∆θ̂ and yaw estimate ∆ψ̂ converge at the same speed. Since the
whiteboard orientation is tracked well, the spring and pen tracking is precise. As
expected, the effect on the errors epy and epz remains close to zero. When looking at
the bottom of Figure 6.20, the reference spring displacement is now followed closely.
There is no more loss of contact and also no strong pushing of the pen against the
whiteboard. On the real platform, both an interrupted drawing or disassembly of
the delta arm would be avoided. In line with these results, the visual error shown
in Figure 6.21 is low. Inaccuracies are removed, e.g. seen in the upper left-hand
corner of the letter ‘S’ and the 3-sigma bound is reduced significantly.

Figure 6.19: The estimated EKF states of the Whiteboard Orientation Estimator
(continuous) and the true orientation misalignment (dotted) for scenario CW.

Figure 6.20: Pen tracking error (top) and Spring tracking (bottom) for scenario CW.
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Figure 6.21: The actual drawing on the whiteboard (left) and the associated visual
error for scenario CW.

Repeatability

As for the drift estimation, the repeatability of the Whiteboard Orientation Esti-
mator is shown by conducting the same experiment 5 times with varying pitch and
yaw offsets. The resulting spring and pen tracking errors plotted in Figure 6.22
show the same as mentioned before: the misalignment of the whiteboard translates
almost entirely into errors in the spring displacement. Using the tactile feedback
the estimator is able to effectively remove these errors and guarantees the pen to
apply the intended amount of pressure onto the whiteboard. Minor errors in the
pen tracking along the y and z axis are reduced as well. It should be noted here
that depending on the orientation of the whiteboard, very high spring displacement
becomes the main issue as seen on the far left in Figure 6.22. In a real-world ex-
periment, such high spring displacements or even a fully maxed out spring, quickly
lead to the delta arm disassembling due to the high pressure on the magnetic links
as there is no damping between the pen and the whiteboard anymore. When con-
ducting the experiments shown in Section 6.2, this was the most frequent cause for
system failure and decreased the reliability of the whole platform. However, this
behavior is not replicated in the simulator.

Figure 6.22: Box plot of spring and pen tracking errors for 5 iterations for scenario
W (left) and CW (right).
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6.3.5 Delta Arm Model Mismatch

In this section, the following scenarios are evaluated: in scenario S the servo offsets
described in Section 5.4.1 are simulated but not corrected. In scenario CS, the
offsets are simulated and the Relative End Effector Position Controller is turned
on to correct for it. In addition, the mismatch between the NMPC model and the
real delta arm is simulated based on length offsets for the push rods introduced in
Section 5.4.1. In the interest of space, the results for these scenarios L and CL are
only reported as the box plot in Figure 6.28.

Servo Offset

During this iteration of scenario S, the given servo offsets cause the end effector to
be off along the y and z axis, but have little effect on the x axis. This can be seen
both in the pen and spring tracking shown in Figure 6.23. The error epy fluctuates
around 7 mm while epz is in the range of 5 mm. Other servo offset configurations
would have different effects on the three axes. For example, if all servos have a
strong negative angle offset, i.e. the end effector is positioned too far back, the pen
will never attach and thus fail to write at all. As reported before, the visual error
ignores global offsets between the actual drawing and the template. This combined
with the fact that the pen tracking error consists in large parts of constant offsets,
causes the visual error shown in Figure 6.24 to be lower than one would expect
given the poor pen tracking. One notices that horizontal lines as well as detaching
and attaching cause the biggest problems for this specific set of servo offsets.

Figure 6.23: Pen tracking error (top) and Spring tracking (bottom) for scenario S.
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Figure 6.24: The actual drawing on the whiteboard (left) and the associated visual
error for scenario S.
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Corrected Servo Offset

For scenario CS, the end effector position is estimated based on the AprilTag as
explained in Section 5.4.2 which is used to inform the Relative End Effector Position
Control explained in Section 5.4.3.

Figure 6.25 shows the estimated and hence applied angle corrections ∆θ̂1, ∆θ̂2, ∆θ̂3
as continuous lines and the true value as dotted lines. All three servo angles are
tracked well based on the observation of the end effector and the subsequent trans-
formation to angle space. In some parts, small oscillations can be seen. To reduce
these oscillations to an acceptable level as seen in the plot, the controller introduced
in Section 5.4.3 includes derivative feedback to provide damping.

Figure 6.25: The applied angle offsets given by the Relative End Effector Controller
(continuous) and the true values (dotted) for scenario CS.

Since the servo angle correction is being estimated correctly, the resulting pen and
spring tracking errors are reduced significantly. As shown in Figure 6.26, the adap-
tive delta arm control allows the pen trajectory to be tracked with millimetre level
accuracy. As to be expected, the improved tracking also results in a lower vi-
sual error. As shown in Figure 6.27, the poor writing along horizontal lines and
when changing contact are rectified. The 3-sigma bound is brought down to sub-
millimetre level accuracy.

Figure 6.26: Pen tracking error (top) and Spring tracking (bottom) for scenario CS.
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Figure 6.27: The actual drawing on the whiteboard (left) and the associated visual
error for scenario CS.

Repeatability

To show that the proposed adaptive control can cope with varying offset config-
urations, the experiments are repeated 5 times with randomly set additive and
multiplicative servo offsets. The resulting tracking errors are shown in the top box
plot in Figure 6.28 and are consistently reduced to the low millimetre range. Hence,
the method works well for any servo angle offsets. To show that the method can also
cope with other delta arm model mismatches, different length offsets on the push
rod are simulated. The results are shown in the bottom box plot. As expected,
perturbing the rod length affects the x axis the most. Using the feedback, both
spring and pen tracking errors are removed reliably.

Figure 6.28: Box plot of spring and pen tracking errors for 5 iterations for scenario
S (top-left), CS (top-right), L (bottom-left) and CL (bottom-right).



Chapter 6. Results 56

6.3.6 Combined Error Sources

After testing each of the three proposed feedback components individually, the
natural next step is to combine them. This corresponds to the expected setting
when performing real-world Aerial Writing tasks outside of a flight arena where no
external motion capture is available, the whiteboard orientation would be hard to
calibrate and the delta arm suffers from model mismatches.

Combined

As for the other simulations, the feedback is turned off during scenario C while the
error sources are simulated. The error sources are kept identical as for the single
error source experiments, meaning that the same drift, whiteboard misalignment
and servo offsets are assumed for the corresponding iterations.
Figure 6.29 indicates that the spring and pen tracking is poor. The pen tracking
error is in the centimetre range now while the spring goes from being not displaced
at all to being pushed too hard. It should be noted here that the different error
sources blend together in these plots and cannot be distinguished from each other.
Given the poor pen tracking, the Aerial Writing performance shown in Figure 6.30
is poor as well. The final outcome misses consistency between the letters and the
drawing is even interrupted at the end of the letter ‘S’ due to loss of contact.
Further, the two ‘overlapping’ lines in the ‘R’ are not on top of each other. In
addition, the vertical line of the ‘L’ appears to be extremely slanted. The 3-sigma
bound indicates errors spanning across almost 5 cm around the intended drawing.

Figure 6.29: Pen tracking error (top) and Spring tracking (bottom) for scenario A.
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Figure 6.30: The actual drawing on the whiteboard (left) and the associated visual
error for scenario A.
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Corrected Combined

For the last scenario CA, the three feedback components are activated in order to
rectify the three error sources. In the following, the performance of each feedback
loop as well as the resulting overall Aerial Writing precision are shown. First,
the performance of the MAV Position Drift Estimator is plotted in Figure 6.31. As
before, the estimated EKF states are plotted as continuous lines and the true values
as dotted lines. The drift tracking is similar to the case where its done individually.
As long as the pen is in contact, the drift is estimated accurately. The estimate
along the x axis, ∆x̂, is still tracked well. However, a small offset can be observed as
the error is consistently underestimated. The estimates ∆ŷ and ∆ẑ show a similar
tracking performance as in the associated scenario CD. As to be expected, once the
pen detaches from the whiteboard, the estimate ∆x̂ no longer follows the true drift.
The other two DoFs are still tracked loosely as long as the template matching does
not fail due to the scale difference in the real and template image.

Figure 6.31: The estimated EKF states of the MAV Position Drift Estimator for
scenario CA.

The Whiteboard Orientation Estimator is evaluated in Figure 6.32. The estimated
EKF states are plotted as continuous lines and the true values as dotted lines. As
soon as the pen touches the whiteboard, the estimates jump far past the correct
value but then bounces back to be close to the true value. This can be explained
as an effect of interference between the different error sources and feedback com-
ponents. Here, the servo offsets cause the pen to be positioned further back if no
feedback was used. Since the Relative End Effector Position Controller cannot cor-
rect this infinitely fast and exact, the pen is still too far back when it should first be
touching the whiteboard. By adjusting the rotation estimates, the Whiteboard Ori-
entation Estimator attempts to account for this offset, leading to the spikes in pitch
and yaw. After the spike, the estimate moves towards the true value. However,
as the first letter ‘S’ is written, the estimate does not converge perfectly. Instead,
the orientation estimates ∆θ̂ and ∆ψ̂ remain slightly off. This is can be linked to
the small offset in the drift estimate along the x axis mentioned before. Again, we
see undesired interference between the different feedback components. Overall, the
orientation estimation does not work as perfectly as in scenario CW but still delivers
reasonable estimates.
The performance of the Relative End Effector Position Control method is plotted
in Figure 6.33. The angle corrections ∆θ̂1, ∆θ̂2, ∆θ̂3 are plotted as continuous lines
and the true values as dotted lines. All three servo angles are tracked accurately.
As for scenario CS, small oscillations can be seen. Overall, this feedback loop shows
comparable performance to when used on its own.
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Figure 6.32: The estimated EKF states of the Whiteboard Orientation Estimator
for scenario CA.

Figure 6.33: The applied angle offsets given by the Relative End Effector Controller
for scenario CA.

The resulting overall tracking errors are small as shown in Figure 6.34. While in
contact, they remain in the range of 5 mm, being significantly lower for most of
the contact phases. This is in strong contrast to Figure 6.29 where the error is
around 20 mm for extended periods. The achieved visual improvement is shown in
Figure 6.35. Apart from minor inaccuracies, the drawing precision is very high en-
suring consistent spacing between the letters and straight lines being truly straight.
Further, the overlapping lines on the letter ‘R’ are now actually on top of each
other. The 3-sigma bound being in the low millimetre range further shows the high
accuracy of the Aerial Writing performed under the influence of all three errors.

Repeatability

The combined scenario is also performed on 5 times while varying all error sources.
As shown on the left of Figure 6.36, the tracking errors are in the range of centime-
tres, usually along multiple axes. Using the multimodal feedback, the error can be
decreased significantly to being in the low millimetre range. Close to zero errors
are achieved for the spring and hence the pen tracking along the x axis. The errors
along the z axis are very low for all but one iteration while the error along y is very
low for all but two iterations. For these iterations, the specific drift profile causes
the method to accumulate small offsets due to the discussed limited accuracy.
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Figure 6.34: Pen tracking error (top) and Spring tracking (bottom) for scenario CA.
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Figure 6.35: The actual drawing on the whiteboard (left) and the associated visual
error for scenario CA.

Figure 6.36: Box plot of spring and pen tracking errors for 5 iterations for scenario
A (left) and CA (right).
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Chapter 7

Discussion

7.1 Real-world Experiments

The system controlled by the pre-existing NMPC pipeline achieves accurate and
consistent results over a series of different trajectories. The tracking error of the end
effector is significantly lower than the one for the MAV, highlighting the accuracy
boost due to the utilisation of the arm. It should be mentioned that the system
was built using relatively cheap, off-the-shelf components and 3D printed parts.
This leads to errors in the manufacturing of the aerial system with respect to the
reference model e.g. errors in the true inverse kinematics of the arm due to non-
identical dimensions of its links. As explained, this then lead to the introduction of
a more adaptive delta arm controller presented in Section 5.4.
Another important issue that occurred during these experiments was the reliance
on the motion capture system for localisation. Apart from issues related to WiFi
delays which resulted in temporary loss of tracking, poor object visibility sometimes
resulted in unreliable estimates during the missions of both the static objects, such
as the whiteboard, and moving ones such as the MAV. In fact, during data analysis
it was found that there are segments where Vicon returned mechanically impossible
configurations for the system e.g. end effector positions below the surface of the
Touch frame. Despite these problems which further propagate into tracking errors,
the system was able to handle multiple transitions to contact during the same
experiment. In addition, the motion capture system showed high orientation errors
for the calibration of the Touch frame, even when using hundreds of pose samples
in an optimisation-based calibration sequence.
It was further experimentally verified that for contact tasks, where the main ob-
jective is accuracy instead of speed, using a planner respecting full state dynamic
feasibility is not an absolute necessity. Despite the use of a simplified motion plan-
ner, the system achieves sub-centimetre accuracy. However, for more aggressive
maneuvers, a full state dynamically feasible plan would be required.

7.2 Simulations

The key finding from the simulated experiments of the proposed multimodal feed-
back is that all three error sources are estimated accurately and can hence be
rectified effectively, both when appearing individually and in combination. The
method is shown to work for random sets of errors with consistent performance. It
can therefore be concluded that the proposed approach is repeatable. It is shown
that both the spring and pen tracking are improved significantly to reach a high
accuracy in the low millimetre range. Further, drastic improvements in terms of
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the appearance-based visual precision metric are shown. The Aerial Writing perfor-
mance goes from very poor, e.g. non-continuous, slanted lines, missing consistency
between and within letters, to a similar performance as seen in the baseline scenario.
Unintended detaching, crooked lines and wrong positioning and scaling of letters
and parts thereof are all prevented through the use of feedback.
The issues with the real-world experiments, i.e. poor manufacturing of the delta
arm and hence a model mismatch and inaccurate calibration of the Touch frame,
are shown to be addressed by the respective feedback components. Further, issues
with external motion capture as described in Section 7.1 would not be present in
the intended mission environment as onboard SLAM would be in use. The SLAM
system’s drifting position estimates would get rectified effectively as shown in the
drift estimation simulations.
It should be noted here that the simulation environment in use is very realistic:
Gazebo combined with the RotorS framework allows highly accurate simulation of
the MAV dynamics. By simulating the Aerial Writing carried out by an exact virtual
replica of the real delta arm, as well as the noisy visual and tactile measurements
all in the same loop, the simulation setup comes very close to what one would
expect in real-world experiments. This should simplify the transition to real-world
experiments using the same multimodal feedback. The achieved accuracy is within
the maximum achievable precision of the real MAV-arm system (low millimetre
range) and should thus allow similar precision as seen in the real-world experiments
while removing the addressed errors.
During the simulations, the approach was shown to have three key limitations:

Limited Precision of Visual Feedback The visual feedback based on template
matching does not provide perfect tracking due to discretisation errors caused
by the camera’s low resolution and the missing tight time synchronisation
between the camera and template image. The drift along the DoFs parallel
to the camera image plane are therefore not tracked as accurately as the DoF
informed by tactile feedback.

Loss of Observability in Free-Flight When not in contact, errors in the DoF
along the spring are no longer estimated correctly. This is due to the tactile
sensor being disconnected and the visual feedback only providing a 2D error in
the camera image plane. In other words, the method loses observability over
the DoF perpendicular to the camera image plane. As the estimate along x
gets more inaccurate while not in contact, the template image will be rendered
from the wrong position leading to a scale discrepancy between the template
and real image. Over time, this causes the template matching performance to
decrease or even fail entirely. When reattaching, the accumulated errors can
only be corrected once the pen touches the whiteboard again and the tactile
feedback is back. Once the corrections are done, some strokes were already
drawn and cannot be corrected anymore.

Interference between Feedback Components The third limitation is that when
running all feedback components together, a limited interference between
them is observed. There is ambiguity in the errors that each of them is
trying to minimise, leading to inaccuracies in the individual state estimates.
For example, a tactile measurement indicating contact further back than ex-
pected can either be accounted for as drift along the x axis, a wrongly oriented
whiteboard or a mismatch in the delta arm model. This slightly deteriorates
the overall drawing accuracy under error influence. However, given the local
nature of the adaptive delta arm control and the different model assumptions
for drift and whiteboard orientation, i.e. random walk vs. fixed offset, the
ambiguities are cleared up to a satisfactory degree as the mission progresses.



Chapter 8

Conclusion

To conclude this Master thesis, the proposed contributions are stated again and
some direction for future work is given.

8.1 Validated Contributions

In this thesis, the following contributions are proposed:

1. The pre-existing NMPC method is extended to include multimodal feedback
from visual and tactile measurements to allow Aerial Writing in a real-world
setup with onboard MAV localisation, a faulty Whiteboard orientation cal-
ibration and a erroneous delta arm model. The approach is validated in
extensive and highly realistic simulations.

2. A highly realistic simulator is developed to evaluate the proposed feedback
while providing full simulation of the Aerial Writing process, the error sources
as well as visual and tactile sensor outputs. The simulator is shown to accu-
rately reflect the real-world system behavior.

3. The pre-existing NMPC method proposed in [9] is evaluated experimentally
in Aerial Writing tasks using an appearance-based visual error metric. Due
to the lack of a widely used error metric for Aerial Writing, this metric is
proposed as a new standardised way to measure the precision of platforms
performing such tasks. The error metric is shown to be suitable to capture
the systems performance in a natural and intuitive manner.

8.2 Future Work

In terms of future work, the following should be distinguished: additional steps that
are planned be done after this thesis is completed, other minor changes which could
be added to the existing approach and major changes that alter the conceptual idea
of the proposed method. The planned steps are discussed first:

Real-world Evaluation The multimodal feedback pipeline proposed in this thesis
is targeted towards enabling Aerial Writing under real-world conditions with
various kinds of errors affecting the system. However, it is only evaluated in
simulations in this thesis. This is caused by lock-down measures implemented
to fight the outbreak of SARS-CoV-2 in London in the spring of 2020. During
the period of the thesis during which real-world experiments were planned,
Imperial’s campus was closed down. Hence, neither the aerial manipulator
nor other Aerial Writing equipment, e.g. the whiteboard, were accessible.

63



Chapter 8. Conclusion 64

As the lock-down restrictions will be eased, the multimodal feedback will be
evaluated on a drone performing real Aerial Writing tasks.

Submission of Findings The findings presented in this thesis along with the
results from the just described real-world evaluation will then be submitted
as a conference paper. As of the time of writing this thesis, the planned goal
is to submit to ICRA 2021.

Minor improvements which would improve the existing approach are listed here:

Scale Sensitive Template Matching By adding scale sensitivity to the tem-
plate matching, the visual feedback could provide a depth error thus going
from a 2D to a 3D signal. This could be done by rendering the template
image in two more versions, one at a slightly lower and one at a higher scale.
The real image could then be matched to all three templates and the best
match would be chosen and the according shift in scale would serve as the
depth error. Ideally, this would prevent the loss of observability along one
axis when the pen is not in contact.

High Resolution and Wide FoV Camera Especially when drawing large let-
ters, the camera can end up observing only one straight line due to its small
field-of-view. When performing template matching, this leads to low invari-
ance of the match along one direction and thus a less reliable visual update
signal. Further, the current resolution of the camera is limited to allow real-
time computation. This leads to a lower overall accuracy of the visual feed-
back. By using a camera with a bigger FoV, e.g. by adding a fish-eye lens,
and higher resolution these issues could be fixed.

Mask Push Rods In the current implementation, only the end effector with the
attached pen case is masked out in the template and real image. However,
occlusions caused by the push rods are ignored. Including these into the mask
would improve the template matching reliability.

Pressure Driven Drawing Visual effects based on changing font thickness de-
pending of how much pressure is applied are ignored in the simulator as the
pen in the real-world experiments is very stiff. Including this by assuming a
softer pen tip could open up new interesting ways of Aerial Drawing, as the
range of achievable strokes and patterns would increase dramatically.

Finally, major improvements requiring significant changes or alterations to the un-
derlying approach include the following:

Time Synchronisation Instead of processing the camera images and other sensor
measurements in a callback-driven approach, a tightly timed pipeline should
be used. This would allow much more exact temporal synchronisation between
the measurements, which would benefit the visual drift tracking the most. In
the current implementation, this was not done due to the significant additional
engineering efforts required.

Dense Visual Tracking Following a similar approach as [58], the matching be-
tween camera and template image could be done in a dense fashion instead of
doing simple template matching. By leveraging dense photometric residuals
and additional ICP errors if depth is available, it should be possible to achieve
more precise tracking.
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